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Abstract 

Retention time information is used for metabolite annotation in metabolomic experiments. But its usefulness is 
hindered by the availability of experimental retention time data in metabolomic databases, and by the lack of 
reproducibility between different chromatographic methods. Accurate prediction of retention time for a given 
chromatographic method would be a valuable support for metabolite annotation. We have trained state‑of‑the‑art 
machine learning regressors using the 80, 038 experimental retention times from the METLIN Small Molecule Reten‑
tion Tim (SMRT) dataset. The models included deep neural networks, deep kernel learning, several gradient boosting 
models, and a blending approach. 5, 666 molecular descriptors and 2, 214 fingerprints (MACCS166, Extended Con‑
nectivity, and Path Fingerprints fingerprints) were generated with the alvaDesc software. The models were trained 
using only the descriptors, only the fingerprints, and both types of features simultaneously. Bayesian hyperparam‑
eter search was used for parameter tuning. To avoid data‑leakage when reporting the performance metrics, nested 
cross‑validation was employed. The best results were obtained by a heavily regularized deep neural network trained 
with cosine annealing warm restarts and stochastic weight averaging, achieving a mean and median absolute errors 
of 39.2± 1.2 s and 17.2± 0.9 s , respectively. To the best of our knowledge, these are the most accurate predictions 
published up to date over the SMRT dataset. To project retention times between chromatographic methods, a novel 
Bayesian meta‑learning approach that can learn from just a few molecules is proposed. By applying this projection 
between the deep neural network retention time predictions and a given chromatographic method, our approach 
can be integrated into a metabolite annotation workflow to obtain z‑scores for the candidate annotations. To this 
end, it is enough that just as few as 10 molecules of a given experiment have been identified (probably by using 
pure metabolite standards). The use of z‑scores permits considering the uncertainty in the projection when ranking 
candidates, and not only the accuracy. In this scenario, our results show that in 68% of the cases the correct molecule 
was among the top three candidates filtered by mass and ranked according to z‑scores. This shows the usefulness 
of this information to support metabolite annotation. Python code is available on GitHub at https://github.com/
constantino‑garcia/cmmrt.
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Introduction
Metabolite annotation remains the main bottleneck in 
untargeted metabolomics  [1, 2], with the vast major-
ity of metabolites being left as unidentified [3]. Beyond 
the molecule’s mass, other molecule’s properties such 
as Retention Time (RT), collision cross section, or the 
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fragmentation spectrum can be very valuable during the 
metabolite annotation process [4, 5]. The most common 
approach to annotate metabolites is to query a metabo-
lomics database for compounds that have a mass com-
patible with the experimental masses. Often this query 
returns multiple annotation candidates for the same 
mass. Next, the researcher tries to discard, or score 
according to plausibility, the candidate annotations using 
other molecule’s properties [1].

Liquid Chromatography Mass Spectrometry (LCMS) 
remains the most common platform used in untargeted 
metabolomics. In addition to m/z ratio, it provides infor-
mation about the Retention Time (RT), the time at which 
metabolites elute from the chromatographic column. 
By using hyphenated setups (MS/MS), the fragmenta-
tion spectra of the molecules may be obtained [6]. These 
spectra are very useful for ruling out candidate annota-
tions, and they are necessary to achieve the highest con-
fidence levels of the Metabolomics Society in metabolite 
annotation (levels 0 and 1 [7]). However, obtaining them 
requires hyphenated setups which are more expensive 
and complex. Even when this type of instrumentation 
is used, the fragmentation spectrum of every molecule 
of interest is not always available due to instrumenta-
tion limitations or time constraints for the analysis. 
Also, sometimes the amount of sample available is not 
sufficient for MS/MS analysis. Hence, especially in pilot 
untargeted studies where unambiguous identification 
is not crucial (that is, where confidence level 2 of the 
Metabolomics Society is enough), often the fragmenta-
tion spectra are not available, and the annotation has to 
be done with just m/z ratios and RTs.

Obtaining molecule’s properties experimentally (such 
as the Retention Time (RT) or the fragmentation spec-
trum) requires the analysis of pure standards, which is a 
long, tedious and expensive process. Therefore, metabo-
lomic databases often lack this information, especially for 
new metabolites that are still being discovered. Further-
more, the variability of the experimental setups means 
that different values are often obtained for these features 
in different setups [6, 8]. The reliable prediction of these 
features from the structures of molecules using machine 
learning techniques is therefore a compelling alternative 
to their experimental generation [9–12].

Computational prediction of the Retention Time (RT) 
has been shown to be useful for molecule annotation in 
proteomics [13, 14] and lipidomics [15, 16]. However, 
until recently the prediction of small molecules Reten-
tion Time (RT) remained a challenge due to the small size 
(usually a few hundreds) of the publicly available Reten-
tion Time (RT) datasets [17]. This size prevented the 
training of machine learning models capable of accurately 
predicting the Retention Time (RT) of the large variety 

of small molecules involved in the typical metabolomic 
study, being the efforts in this direction limited to the 
prediction of the Retention Time (RT) of some concrete 
type of small molecules [14, 16, 18], or of the order of 
elution of the molecules [19, 20]. This situation changed 
recently with the publication of more than 80,000 experi-
mental RTs collected through reversed-phase Liquid 
Chromatography Mass Spectrometry (LCMS) from the 
METLIN Small Molecule Retention Time (SMRT) data-
set [21], which has renewed interest in the Retention 
Time (RT) prediction of small molecules [17, 22–26].

In this paper we have tested the performance of several 
state-of-the-art machine learning models for the task of 
Retention Time (RT) prediction using the SMRT dataset. 
In the evaluation presented in [21] the molecules that 
were not retained by the column were excluded. In our 
evaluation, both retained and non-retained molecules 
will be considered. Non-retained molecules are typically 
ignored in metabolomics experiments. However, the 
ultimate goal of the machine learning model would be 
the computational prediction of the RTs of a set of mol-
ecules present in a metabolomics database based on their 
chemical structures, to confirm or discard candidate 
metabolite annotations. In this scenario, it is unknown 
in advance whether a molecule of the database is going 
to be retained or not, and therefore it is desirable to pre-
dict as accurately as possible the RTs of the non-retained 
molecules.

Hyperparameter search for the models was performed 
with the Tree-structured Parzen Estimator (TPE) algo-
rithm [27], and a nested cross-validation was used in 
the evaluation. The best model was a Deep Neural Net-
work (DNN) trained using molecular fingerprints, which 
improved the performance of the best previous models to 
predict Retention Time (RT) [24, 26].

Having a machine learning model capable of accurately 
predicting the Retention Time (RT) would enable filter-
ing out annotations with similar mass but different RTs. 
However, note that a model trained on the SMRT dataset 
can only accurately predict RTs for a Chromatographic 
Method (CM) identical to the one employed to collect 
this data. Since laboratories usually customize the Chro-
matographic Method (CM) for the needs of each experi-
ment, a SMRT-based model cannot be directly applied to 
experimental data from other laboratories, or even other 
experiments conducted in the same laboratory. However, 
if CMs are similar, elution order is largely preserved [8], 
which enables the construction of a projection function 
that maps RTs in one Chromatographic Method (CM) to 
RTs in another Chromatographic Method (CM). Figure 1 
illustrates both the dependency of the RTs with the Chro-
matographic Method (CM), and the conservation of the 
elution order. To build such a projection function, a set 
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of known molecules whose RTs is known in both CMs is 
needed.

Figure  2 shows a possible workflow to exploit the 
Retention Time (RT) predictions of a machine learning 
model and a projection method during the metabolite 
annotation process. Although not explicitly shown in 
the figure, we assume that RTs are used in conjunction 
with the m/z ratio. In the center of Fig. 2 there is a large 
database containing molecule identities and their main 
chemical properties, including RTs. The RTs stored in 
the database are computed using the predictive model 
trained on the SMRT dataset (step 1). The creation of 
a database (step 2) avoids running complex predictive 
models in real-time. Also, note that this database may 
include molecules not observed in the SMRT dataset. To 
use this database, a researcher provides the experimental 
RTs (as measured in his/her Chromatographic Method 
(CM)) of a few molecules whose identity is known (step 
3). These molecules will typically be pure metabolite 
standards added to the sample. The molecule identities 
are then used to retrieve the corresponding predicted 
RTs from the database, which will be subsequently used 
to create pairs of experimental-predicted RTs (step 
3). A projection function mapping predicted RTs to 

experimental RTs is learned from these pairs (step 4). The 
researcher then provides experimental m/z (not shown in 
the figure to avoid clutter) of the molecules he/she is try-
ing to identify. The m/z ratios are used as a first filter to 
obtain candidate annotations from the database. The pre-
dicted RTs of the filtered molecules are then projected to 
experimental RTs to create a “projected database” (step 
5). Note that the projected database is much smaller than 
the original one due to the m/z filtering, which makes 
the projection computationally efficient. The researcher 
finally uses the experimental RTs to query the projected 
database (step 6). The results retrieved from it would 
enable scoring candidates with similar m/z but different 
RTs (step 7).

To make this workflow practical, it is desirable that 
the projection function can be learned from a very small 
dataset, so that the researcher only has to identify a 
small set of molecules. To that end, this work proposes 
a Bayesian meta-learning approach to project the pre-
dicted RTs to a specific Chromatographic Method (CM) 
based on just a few identified molecules. This approach 
has the advantage of being able to generalize from a small 
training set while providing confidence intervals for the 
Retention Time (RT) projections between CMs, and not 
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Fig. 1 RTs measured in different CMs (y‑axis) compared with the predictions of a machine learning model trained on SMRT (x‑axis). The figure 
also shows the RTs of the same molecule (PubChem ID 10742) in the different CMs (shown with the star shapes), which illustrates the variability 
in the times measured with different experimental configurations. Since the model has been trained on a single Chromatographic Method (CM), 
the experimental RTs on different CMs do not match its predictions (dashed line). This figure illustrates the need for a projection method able to 
translate the predictions of a model trained on a specific Chromatographic Method (CM) to different CMs
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only a point estimate. We demonstrate the ability of the 
proposed projection method to learn from few samples 
by testing not only its predictive accuracy, but also its 
ability to rank the correct metabolite identity among the 
top three candidates based on their RTs.

Materials
The METLIN Small Molecule Retention Time (SMRT) 
dataset consists of the experimental retention times of 
80,038 small molecules from the METLIN library [21]. 
All RTs were obtained using reverse-phase chromatogra-
phy with high-performance liquid chromatography-mass 
spectrometry (HPLC-MS). The dataset has a wide variety 
of small molecules analysed under the same conditions, 
including metabolites, natural products and drug-like 
small molecules. It also includes non-retained molecules; 
these are compounds that are not retained in the column 

and elute before gradient starts, typically within the first 
minute. Hence, RTs of the non-retained molecules are 
considerably smaller than RTs of the retained molecules. 
Although some authors ignore the non-retained mol-
ecules when validating machine learning models, the 
whole dataset was used for both training and validat-
ing the regressors of this paper. The rationale for this is 
that these machine learning models are going to be used 
to predict RTs of metabolites in a database (see Fig.  2). 
Then, these predictions could be used to filter and rank 
experimental data. If a regressor is trained without non-
retained RTs it will only be able to predict retained RTs, 
even for a non-retained metabolite A in the database. If 
in an experiment there is an unidentified metabolite B 
with a similar m/z and whose RT is close to A’s (wrongly) 
predicted Retention Time (RT), the system will propose 
metabolite A as a candidate annotation for B. Hence the 
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Fig. 2 Illustrative workflow to exploit a machine learning model trained on a large dataset (here, SMRT) to annotate metabolites. Steps 1‑2: a RTs 
database is created using a predictive model trained on the SMRT dataset. Step 3: to use this database, a researcher provides the experimental RTs 
of a few molecules whose identity is known. The molecule identities are then used to retrieve the corresponding predicted RTs from the database 
to create pairs of experimental‑predicted RTs. Step 4: a projection function mapping predicted RTs to experimental RTs is learned from these pairs. 
Step 5: the researcher then provides experimental m/z (not shown in the figure) of the molecules he/she is trying to identify. Molecules are filtered 
using the m/z ratio and the predicted RTs of those molecules are then projected to experimental RTs to create a “projected database”. Step 6: the 
researcher finally uses the experimental RTs to query the projected database. Step 7: the results retrieved from it would enable scoring candidates 
with similar m/z but different RTs



Page 5 of 23García et al. Journal of Cheminformatics           (2022) 14:33  

interest in training the regressors with both retained and 
non-retained molecules.

The SMRT dataset has been made public including 
the PubChem numbers and SDF files representing their 
chemical structure [28], together with their experimental 
RT information. In this work, these chemical structures 
were used to obtain a wide variety of features describing 
relevant properties of the molecules. These features were 
computed using alvaDesc [29, 30] and include both fin-
gerprints and molecular descriptors. Specifically, alvaD-
esc permits the computation of MACCS166 fingerprints, 
Extended Connectivity Fingerprints (ECFP) [31] and Path 
Fingerprints (PFP), making a total of 2, 214 fingerprints. 
Additionally, the 5, 666 molecular descriptors supported 
by alvaDesc were also generated; the complete list can be 
seen in [32]. All the descriptors and fingerprints obtained 
with alvaDesc were used to feed the regressors.

Following  [21], we also used the PredRet database  [8] 
for validating the projections from predicted to experi-
mental RTs. The PredRet is a database of experimental 
RTs from different chromatographic systems commonly 
used for building and testing projection models between 
pairs of CMs.

Methods
First we shall describe the different machine learning 
models used to predict the RTs, and then we shall pre-
sent our Bayesian approach to project the RTs to a given 
Chromatographic Method (CM).

Prediction of retention times with machine learning
Several state of the art machine learning regressors 
were tested for predicting the RTs using three different 
sets of features: fingerprints only, descriptors only and 
fingerprints+descriptors. Parameter search was used 
for tuning all models with the exception of CatBoost-
based regressors (see "Gradient boosting" Section for 
the rationale). We have also created an ensemble with all 
the trained models to attempt to further improve Reten-
tion Time (RT) prediction [33]. Some of the choices for 
the regressors can be understood by the need of having 
diversity in their predictions to increase the chances of 
the ensemble improving their individual performances 
(see "Blending" Section).

Preprocessing of descriptors and fingerprints
Descriptors were first standardized and imputed using 
median imputation when alvaDesc was not able to gener-
ate some descriptor. If imputation was needed, a missing 
indicator was added, enabling the regressors to account 
for missingness despite the imputation. Features with 0 
variance were removed. Highly correlated features were 

also eliminated (correlation > 0.9 ); this conservative 
threshold was not tuned since all tested regressors are 
robust against collinearity. The main benefit of removing 
correlated features is memory saving.

The only preprocessing applied to the fingerprint fea-
tures was removing those with low variance. Treating 
each feature X as a binary Bernouilli random variable, the 
variance threshold was selected using Var[X] = p(1− p) , 
were p is a parameter to be tuned (see "Bayesian hyper-
parameter search" Section) which is usually set to a high 
value (typically > 0.9).

Taking inspiration from [24], an additional binary fea-
ture was added to each molecule representation indi-
cating whether the molecule is retained or not. Since in 
a real world application this information would not be 
available, this feature must also be predicted. To that end, 
we trained a eXtreme Gradient Boosting (XGBoost) clas-
sifier. As suggested by Fig. 3, a molecule was considered 
non-retained if its Retention Time (RT) was smaller than 
5 minutes. The XGBoost classifier was tuned using the 
same procedure described in "Bayesian hyperparameter 
search" Section for the regressors, although the metric to 
be maximized in this case was the F1 score. Preliminary 
results suggested that using fingerprints, descriptors, and 
fingerprints+descriptors yielded similar results, so we 
used only fingerprints as features for speed.

Gradient boosting
Gradient Boosting Machines (GBMs) have already been 
considered in state of the art methods for Retention Time 
(RT) prediction  [24]. In this work, several GBMs were 
tested, using slightly different approaches for the hyper-
parameter search. In addition to the interest of compar-
ing several GBMs, the use of different combinations of 
GBMs and tuning options was partially motivated by the 
need of having diversity in the predictions for building a 
good ensemble (see "Blending" Section). Specifically, we 
tested:

• XGBoost  [34]: it is probably the most-commonly 
used GBM, and it was employed for Retention 
Time (RT) prediction in  [24]. Bayesian search was 
applied on different regressors fed using fingerprints, 
descriptors and fingerprints+descriptors. Among the 
tuned parameters, the most relevant ones include the 
number of boosting rounds, the maximum depth of 
the trees, subsampling parameters (either by column, 
by tree or by level), regularization parameters (such 
as L1 and L2 regularization) and parameters control-
ling the conservativeness of the algorithm (usually 
referred as γ and minimum child weight).

• Gradient Boosting Machine (lightGBM)  [35]: it is a 
well-known alternative to XGBoost, with optimiza-
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tions for speed and memory usage (hence, its name). 
Furthermore, stepwise optimization methods par-
ticularly designed for lightGBM can be used. This 
avoids the need for Bayesian search, further reduc-
ing tuning times by exploiting heuristics. The hyper-
parameters were selected in the following order: L1 
regularization, L2 regularization, maximum number 
of leaves, proportion of randomly selected features 
on each tree, bagging fraction, bagging frequency (it 
controls the number of iterations between bagging) 
and the minimum number of samples in the leaves.

• CatBoost  [36]: an interesting question regarding the 
non-retained molecules is if their inclusion as train-
ing data improves the performance of the regressors. 
To investigate this question, the performance of a 
regressor when trained with different weights for the 
retained and non-retained molecules can be evalu-
ated. Different weights for both types of molecules 
can also help with the unbalance between retained 
and non-retained molecules. Since the ratio of non-
retained to retained molecules is approximately 
1/40 in the SMRT dataset, the weight of the retained 
molecules was set to 1, whereas the weight of the 
non-retained molecules was varied between 10−6 
(effectively ignoring them) and 80 (hence the global 
influence of the non-retained molecules is approxi-
mately twice the influence of the retained ones). 

However, using the same approach as with previous 
regressors would require a full Bayesian search for 
each weight of the non-retained molecules. Instead 
of tuning parameters for each weight, we looked for 
a regressor able to provide good performance with 
its default parameters. CatBoost was selected for this 
reason  [36]. Note that CatBoost regressors not only 
permit studying the influence of the non-retained 
molecules in the predictions, but they also provide 
a useful context that may enable the meta-regressor 
of the ensemble to distinguish between retained and 
non-retained molecules (see "Blending" Section).

Deep neural network
Together with GBMs, DNNs usually achieve the best 
results in machine learning competitions [37, 38]. DNNs 
were used for Retention Time (RT) prediction in  [21], 
where a DNN with 4 layers and regularization was pro-
posed. Regularization is key for achieving good gener-
alization, since even a small shallow neural network can 
overfit the SMRT dataset in a few epochs. Driven by this 
observation, we used a DNN with just 3 layers, regular-
ized using large dropout rates. The sizes of the hidden 
layers, the dropout rates and the non-linear activations 
were determined using Bayesian hyperparameter search.
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Fig. 3 Histogram of the RTs in the SMRT dataset. The distribution is clearly bimodal due to the presence of non‑retained molecules. In this paper, a 
molecule is considered as non‑retained if its Retention Time (RT) is smaller than 300s
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To improve the generalization ability of the DNN and 
to accelerate its training, we used cosine annealing warm 
restarts  [39]. The number of restarts and the length of 
the cosine annealing were also subject to hyperparam-
eter search. After the training with warm restarts, we 
employed Stochastic Weight Averaging (SWA) using a 
constant learning rate schedule. With this setting, SWA 
just consists of training the DNN for a few extra epochs 
(whose optimal value is to be determined during hyper-
parameter search), and then averaging the weights of the 
DNN along the trajectory followed during optimization. 
In [40], the authors suggest that SWA leads to wider min-
ima, which is hypothesized to result in better generaliza-
tion than conventionally trained DNN.

Finally, quantile transformation was applied to RTs 
before fitting. The method transforms RTs to follow a 
standardized normal distribution. This may facilitate 
learning since the last layer does not need to learn large 
weights to match the untransformed RTs.

Kernel methods
Support Vector Machines (SVMs) have already been 
considered for a wide variety of applications related to 
metabolites, including elution order prediction  [19]. 
Although we tested SVMs with both descriptors and 
fingerprints, performance of both regressors was poor. 
As an alternative to this classic kernel method, we con-
sidered Deep Kernel Learning (DKL)  [41]. DKL can be 
interpreted as a DNN whose last layer has been substi-
tuted by a Gaussian Process (GP). This permits leveraging 
both the ability of deep learning for extracting relevant 
features from the raw-inputs, and the non-parametric 
flexibility of GPs. The combination of the DNN and the 
GP kernel can also be viewed as a new flexible kernel 
which can be used as a drop-in replacement for standard 
kernels. DKLs were tested using fingerprints, descriptors 
and fingerprints+descriptors.

Following the observations from "Deep neural network" 
Section, we employed a highly regularized DNN. Besides 
dropout, we also considered batch-normalization  [42], 
not only because of its regularization capabilities, but 
also because it keeps activations from the network within 
a predictable range. This eases the use of kernel interpo-
lation (specifically, KISS-GP  [43]) to approximate the GP 
kernel, which enables fast computations. Quantile trans-
formation was also applied to the RTs.

DKL was trained using early stopping, and the learning 
rate was tuned during parameter search. Similar to the 
DNNs from "Deep neural network" Section, the specific 
architecture and regularization were subject to param-
eter search. Learning rate scheduling was used, reduc-
ing the learning rate when validation loss was stacked in 
a plateau. The patience argument before decreasing the 

learning rate was also tuned. Finally, three kernels were 
considered during hyperparameter tuning: the squared 
exponential kernel, the linear kernel and a spectral mix-
ture kernel with four components  [44]. A full list of the 
mathematical expressions of the kernels used in this 
paper can be found in Section S3 of Additional file 1.

Blending
We tested if the combination of the different regressors 
could improve their individual predictions. We used 
blending  [45] to build a meta-regressor which learns to 
combine the predictions of the so-called base-regressors. 
Blending is a popular alternative to stacked generaliza-
tion (or stacking)  [46] which has lower computational 
demand and it is simpler, resulting in less likelihood of 
information leakage. With large datasets like SMRT, 
blending and stacking usually yield similar results. Hence, 
since the meta-regressor is also subject to parameter tun-
ing, blending was used for faster training.

To train a meta-regressor with blending, a holdout set 
is created using a small subset of the training set. In our 
experiments, we used a 80-20% split. The base-regressors 
are trained on the 80% of the data, and their predictions 
for the holdout dataset are stored. The meta-regressor 
then learns to combine the predictions of the base-
regressors using the predictions on the holdout dataset. 
Note that an instance on the original training data is only 
used just once for training, either on the base-regressors 
or in the meta-regressor, avoiding information leakage. 
This procedure for training the meta-regressor is also 
outlined in Fig. S1 of Additional file 1.

A random forest was used as meta-regressor, tuning 
its main parameters through Bayesian optimization. The 
parameters tuned were the number of trees, the maxi-
mum depth of each tree, the maximum number of fea-
tures considered at each split, the minimum number 
of samples before considering a split and the minimum 
number of samples at a leaf.

Bayesian hyperparameter search
Most regressors with the exception of lightGBMs (tuned 
using iterative search for speed tuning) and CatBoost-
ers (not tuned due to its good default values) were tuned 
using Bayesian hyperparameter search. The p parameter 
controlling the thresholding of binary features was also 
optimized (see "Preprocessing of descriptors and finger-
prints" Section). The parameters were tested following 
the predictions of a TPE algorithm [27]. The TPE algo-
rithm works by suggesting the parameters that maximize 
the expected improvement in the score being maximized, 
which in this paper was the negative of the MEDian 
Absolute Error (MEDAE). This permits balancing 
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exploration versus explotation, obtaining a set of hyper-
parameters with good performance in fewer iterations 
than other approaches like grid search. In our experi-
ments each model performed 50 iterations of the Bayes-
ian search.

Regarding the optimization of the blended regres-
sor, it should be noted that it proceeds greedily. That is, 
base-regressors are tuned individually, and the predic-
tions of the best performing parameters are then used 
to create the training set for the meta-regressor. Finally, 
the parameters of the latter are optimized. It may be 
argued that this approach is suboptimal, since the base-
regressors cannot be tuned to complement each other. 
However, jointly optimizing all base-regressors and the 
meta-regressor is difficult due to the dimensionality of 
the search space. Furthermore, this approach would not 
permit drawing conclusions from the performance of the 
base-regressors, which is part of the objectives of this 
work.

Validation procedure
To avoid data-leakage when reporting the performance 
of the different models, nested stratified cross-valida-
tion was used. Nested cross-validation guarantees that 
different data is used to tune model parameters and to 
evaluate its performance by means of outer and inner 
cross-validation loops  [47]. In the outer loop, train/test 
splits are generated, which are then used for averag-
ing the test scores over several data splits. In the inner 
loop, the train set is further split in train/validation sub-
sets. The best parameters are selected by minimizing the 
MEDAE on the validation splits. We used 5-folds and 
7-folds stratified cross-validations in the outer and inner 
loops, respectively. To ensure that the distribution of RTs 
is representative of the population in all folds, stratifi-
cation was performed by separating the target variable 
(RTs) into 6 different bins. The validation procedure is 
also summarized in Fig. S1 of Additional file 1.

The Bayesian hyperparameter search ("Bayesian hyper-
parameter search" Section) and the validation proce-
dure described in this section approximately required 
2.5 months of computational time in a computer with an 
AMD Ryzen Threadripper 2970WX with 24 cores at 1.85 
Gz, and a NVIDIA GeForce RTX 2080 GPU.

Projection between chromatographic methods
Machine learning models trained on a given Reten-
tion Time (RT) dataset (SMRT in this work) cannot be 
directly used to predict experimental RTs from other 
Chromatographic Method (CM)s due to the variability 
of the experimental setups. To exploit the knowledge of 
a predictive model trained on the SMRT, a second model 

projecting the predicted RTs to the specific Chromato-
graphic Method (CM) used in an experiment is needed.

Given a specific Chromatographic Method (CM), the 
projection function can be learned if some of the exper-
imental metabolites have been identified, and therefore 
both their experimental and predicted RTs are known 
(step 3 in Fig. 2). For the workflow in Fig. 2 to be practi-
cal, it is desirable that the projection function can be 
learned from a small dataset (tens of molecules) so that 
the researcher has to identify just a few molecules. In 
practice, this would probably be accomplished by add-
ing pure metabolite standards to the sample. The more 
standards that need to be used, the more time and 
money will be required. Hence the interest in minimiz-
ing their number.

Bayesian methods are particularly well suited to solve 
classification/regression problems when data is scarce. 
This is due to their ability to incorporate prior knowl-
edge about the problem. If the prior provides useful 
inductive biases for the task at hand, only a few sam-
ples may be needed to learn a proper solution to the 
problem [48]. Hence, under the Bayesian paradigm, the 
issue of learning from few data becomes how to specify 
a suitable prior for the problem.

Meta-learning has recently arose as a possible solu-
tion for acquiring useful prior knowledge. In meta-
learning, knowledge is gained by solving a set of tasks 
(meta-tasks), which is then exploited to solve a closely-
related but different task (target-task). In the Bayesian 
setting, meta-tasks are used to learn a useful prior dis-
tribution, which is then used as starting point to solve 
the target-task. This is done by incorporating new evi-
dence provided by the target-task into the prior, which 
results in the so-called posterior distribution.

Hence, we propose the use of meta-learning to solve 
the problem of learning from few samples. The outline 
of the approach is shown in Fig.  4. We shall consider 
that the set of meta-tasks M consists of m datasets 
M = {Di}

m
i=1 , each corresponding to a different Chro-

matographic Method (CM). Each dataset Di contains 
predicted RTs xi , as well as the experimental RTs 
obtained with a specific Chromatographic Method 
(CM), yi . Hence, Di = {x

i, yi} is a single meta-task and 
we would like to map xi to yi using a smooth function 
f (·) . The predicted RTs are obtained by using the best 
predictive model from "Prediction of retention times 
with machine learning" Section. In our problem, meta-
tasks are used to learn a prior distribution p(f) over the 
functions f (·) translating predicted RTs to experimen-
tal RTs of different CMs. Let us consider that we have 
gathered experimental RTs using the CMs A, B and C. 
During meta-learning, the projection functions
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will be constructed. These functions should be consid-
ered as samples drawn from the same distribution p(f). 
The aim of meta-learning is to learn a plausible prior p(f) 
that explains all observed samples fA(·), fB(·) and fC(·).

In addition to the the meta-tasks we have the target-task 
D̃ = {x̃, ỹ, x̃∗, ỹ∗} . Again, a single target-task is comprised 
of data from a single Chromatographic Method (CM). 
Intuitively, the target training points {x̃, ỹ} represent mol-
ecules whose identity is known (step 3 in Fig. 2) whereas 
the target test points {x̃∗, ỹ∗} are molecules whose identity 
is to be discovered (step 6 in Fig. 2). We assume that the 
number of annotated molecules is small (indeed, this is the 
main difference between a meta-task and a target-task). 
Note that, when solving the target-task, the prior distribu-
tion p(f) learned during meta-learning is updated with the 
new evidence {x̃, ỹ} , which should enable the prediction/
ranking of {x̃∗, ỹ∗}.

GPs are particularly suited as projection model: they 
represent a distribution over functions, they can perform 
regression on smalls amount of data, and they can incor-
porate prior knowledge using the Bayesian framework. 
Hence, we shall consider:

fA(x
A) ≈ yA, fB(x

B) ≈ yB, and fC(x
C) ≈ yC ,

where the mean and kernel functions of the GP are para-
metrized with θm and θk , respectively. Hence, the whole 
prior is parametrized with θ = [θm, θk ] . These param-
eters are learned by minimizing the negative Leave One 
Out (LOO) log predictive probability on the meta-tasks 
(see Algorithm 1, where yi

−j means all targets but the j-th 
item). The use of the LOO-based loss instead of the usual 
log marginal loss is based on the observation that cross-
validation procedures (such as LOO) should be more 
robust against possible model misspecifications [49, Sec-
tion  4.8]. Once the parameters have been learned, they 
can be used to specify a prior that is expected to general-
ize well on the target-task. Indeed, to avoid overfitting, θ 
is not optimized while solving the target-tasks. The only 
parameter estimated with target-task data is the variance 
of the residuals. This is done by maximizing type II maxi-
mum likelihood during 250 epochs with an Adam opti-
mizer with learning rate set to 0.01.

f (·) ∼ GP
(
mθm(·), kθk (·, ·)

)
or equivalently

pθ (f ) = GP
(
f | mθm , kθk

)
, θ = [θm, θk ]

Optimize prior pθ(f) 
on meta-tasks

Fit GP on target
training set

Predict on target
test set

1

2

3

4

Solving target taskMeta-learning

Fig. 4 Overview of the meta‑learning approach to RTs projection. 1) The meta‑tasks consist of creating projection functions mapping predicted 
RTs to experimental RTs in several Chromatographic Method (CM)s. Each target Chromatographic Method (CM) is a different meta‑task. 2) During 
meta‑learning a prior distribution pθ (f ) on the projection functions is learned. This prior contains the learned projection functions in the meta‑tasks 
(shown in color), and also any other function with similar properties to those observed in the dataset (shown in gray). 3) To solve a target‑task, the 
prior distribution pθ (f ) is updated with new evidence provided by the target training set, resulting in the so‑called posterior distribution. 4) The 
posterior distribution is used to evaluate the performance on a target test set
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It is worth noting that the proposed meta-learning 
method fits well the Retention Time (RT)-based filtering 
workflow shown in Fig. 2. In this scenario, a query from 
a researcher corresponds to a target-task, which exploits 
the information provided by a previously meta-learned 
prior. Furthermore, although computing new predictions 
with the projection function scales quadratically with the 
training data, it will typically train on tens of RTs. Hence, 
it would only take tenths of a second to map experimen-
tal RTs to predicted RTs. Next sections present the data 
preprocessing and the parameter ( mθm , kθk ) selection 
process used to devise our projection method.

Experimental setup and data preprocessing
In  [21] the non-retained molecules were ignored for 
validating the projection method, and we adopt the 
same methodology here. The rationale for this is that in 
an experiment is easy to know if a molecule has been 
retained or not, and a researcher would not use a RTs 
database to try to annotate non-retained metabolites.

To avoid data-leakage during validation, we ensured 
that the meta-tasks data, target training data, and target 
test data did not overlap. To that end, we used a leave-
one-Chromatographic Method (CM)-out approach. That 
is, data from a specific Chromatographic Method (CM) 
could only be used as either part of the meta-tasks or as 
the target-task. Hence, when using a Chromatographic 
Method (CM) as target-task, meta-learning was used on 
the remainder of CMs. Following [21], the following CMs 
were used to create the target-tasks: FEM long (342 mol-
ecules), FEM orbitrap plasma (133), LIFE old (148) and 
RIKEN (271). The number of molecules in the remainder 
of CMs is 2418.

For a specific target-Chromatographic Method (CM) 
(one of the four above mentioned), and after meta-
learning on the meta-tasks, the target training data is 
created by subsampling the Chromatographic Method 
(CM) data (and the remainder of RTs are used as target 
test data). To obtain a good projection, researchers are 
expected to add standards spanning the whole range of 

the experimental RTs. To mimic this behaviour, stratified 
sampling was used. Sampling was repeated 10 times for 
each number of training points to obtain error estimates. 
To study the robustness of the projection method when 
only a few metabolites are known, the number of training 
points was varied between 10 and 50; 50 was the number 
of molecules used in [21].

All GP models share the same preprocessing steps 
despite their mean and kernel functions. RTs are trans-
formed to log space using

where x and y may belong to any meta-task Di or any tar-
get-task D̃ . The motivation for using this transformation 
is twofold. On one hand, RTs take only positive values. 
Without any transformation, the model has to learn this 
restriction on its own, which may be difficult in the scarce 
data scenario. By using the transformed RTs ȳ , the model 
learns to predict a target without any restriction. Then, 
the inverse transformation maps back ȳ to the positive 
interval, forcing positiveness in the projected RTs. On the 
other hand, by also applying the transformation to x , the 
non-linear relationship between x and y linearizes, which 
could enable the use of simpler kernels.

After the log-transformation, and since the software 
used to implement GPs is geared towards using inputs 
normalized to [0, 1] and outcomes normalized to [−1, 1] , 
data is further scaled using robust statistics. We used

where IQR denotes the interquartile range. The con-
stant 0.741 is used because, for normal populations, the 
standard deviation fulfills σ ≈ 0.741 · IQR . Hence, under 
the normality assumption, 99.7% of the transformed ¯̄x 
will be on the [0, 1] range and 99.7% of the transformed 
¯̄y will be on the [−1, 1] range. Despite the different last 

x̄ = log(1+ x) and ȳ = log(1+ y),

¯̄x =

(
x̄ −median(x̄)

0.741 · IQR(x̄)
+ 3

)
/6 and

¯̄y =

(
ȳ−median(ȳ)

0.741 · IQR(ȳ)

)
/3,
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preprocessing step for predicted ( x ) and experimental 
( y ) RTs, both transformations are learned using the pre-
dicted RTs. Thus, there is no Chromatographic Method 
(CM)-dependent scaling.

Comparison of meta‑learned GP models
We evaluated the performance of the different meta-
learned GPs models arising from various choices of their 
two parameters:

• Mean function mθm(·) : a typical parametriza-
tion of a GP when no prior information is avail-
able about the mean is f (·) ∼ GP

(
0, kθk (·, ·)

)
 ; that 

is, mθm(·) = 0 . The underlying assumption is that 
all relevant prior information can be incorporated 
into the kernel parameters θk . However, [50] shows 
that learning a mean function mθm(·) (either alone 
or combined with kernel learning) can outperform 
kernel learning alone. We tested this in our prob-
lem by studying GPs with a constant mean func-
tion, and GPs with a mean function parametrized 
with a neural network. In our experiments, we used 
a neural network with two hidden layers with 128 
units and leaky-ReLU activations.

• Kernel function kθk (·, ·) : different kernels result in 
different properties of the projection function. We 
compared the commonly used kernels and combi-
nations of them. Specifically, we tested the squared 
exponential kernel, Matérn kernels with ν = 1.5 and 
ν = 2.5 , the polynomial kernel of degree 4, a linear 
combination of two squared exponential kernels, a 
linear combination of a linear kernel and a squared 
exponential kernel, and a linear combination of a 
squared exponential kernel and a polynomial kernel 
of degree 4. A full list of the mathematical expres-
sions for these kernels can be found in Section S1 of 
Additional file 1.

The experimental setup described in "Experimental setup 
and data preprocessing" Section is used. We focused on 
the performance of the models in the low-data regime 
using just 10 training data points. For a single target-task 
D̃ = {x̃, ỹ, x̃∗, ỹ∗} , the predictive marginal log-likelihood

was used as metric of the model’s performance.
To obtain a single metric while taking into account 

the possible differences in the scales of the marginal log-
likelihoods for the different CMs, each LD was compared 
with the marginal log-likelihood of a reference model 

(1)LD = p(ỹ∗ | D, x̃, ỹ, x̃∗) =

∫
p
(
ỹ∗ | f (x̃∗)

)
p
(
f (x̃∗) | D, x̃, ỹ, x̃∗

)
df .

Lref
D

 : �LD = LD − Lref
D

 . We used as reference model 
a GP with constant mean and squared exponential ker-
nel trained on the target-task without meta-learning. 
This model was trained by optimizing type II maximum 
likelihood during 500 epochs using an Adam optimizer 
with learning rate set to 0.01. The final metric �Lavg was 
obtained by averaging across the four test-tasks and rep-
etitions. Values �Lavg > 0 correspond with models that 
perform better (in average) than the reference one. Note 
that this not only permits the comparison of different 
meta-learned GP-models, but it also assesses the useful-
ness of the meta-learning approach.

Additional experiments studying the influence of the 
number of meta-tasks in the performance of the GP were 
also carried out. They are discussed in Section S3 of the 
Additional file 1.

Predictive performance of the projection function
We compared the best GP-model from "Comparison of 
meta-learned GP models" Section with monotonic Gen-
eralized Additive Models (GAMs) [8], robust polynomial 
regression [21] and piecewise polynomial regression [24]. 
Unfortunately, it is not possible to compute the predictive 
marginal likelihood for all these models. Hence, we eval-
uated the performance of the models attending to both 
their predictive accuracy as well as their ability to gen-
erate proper prediction intervals. To test the predictive 
accuracy of the meta-learning approach we computed 
the median relative error, Mean Absolute Error (MAE) 
and MEDAE for the target test set. To test the prediction 
intervals we used the interval score [51]

where ℓ and u are the lower and upper ends of the pre-
diction interval generated for the test target points ỹ∗ , 1 
is the indicator function, and α is the coverage that the 

models are aiming for. We used α = 0.95 in all experi-
ments. Equation  (2) can be understood by noting that 
a proper prediction interval should reach a tradeoff 
between being as small as possible ( li should be close to 
ui ) and covering the observed values ( li ≤ ỹ∗i ≤ ui ). The 

(2)

S(ℓ,u, ỹ∗) =
1

len(ỹ∗)

len(ỹ∗)∑

i=1

S(ℓi,ui, ỹ
∗

i )

with

S(ℓi,ui, ỹ
∗

i ) = (ui − ℓi)+
2

α
(ℓi − ỹ∗i )1(ỹ

∗

i < ℓi)

+
2

α
(ỹ∗i − ui)1(ỹ

∗

i > ui),
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first term of Equation  (2) just measures the length of 
the interval, while the second and third terms penalize 
having observed values outside the prediction interval 
(moreover, the further apart an observation is from the 
interval, the larger the penalty).

Note that the interval score has the same units as the 
RTs in ỹ∗ . To obtain an adimensional metric and facilitate 
the comparison of different target CMs, we define the 
scaled interval score as S(ℓ,u, ỹ∗)/median

(
[y∗, ỹ∗]

)
.

Ranking annotations based on the projection function
We have tested the ability of the projection method to 
rank and filter candidate annotations in metabolomic 
experiments based on mass search and RT predictions. 
The test implements a similar workflow to that described 
in Fig. 2. We collected the Retention Time (RT) predic-
tions of the best-performing model from "Prediction 
of retention times with machine learning" Section for 
the 6,823 molecules with KEGG number in the Human 
Metabolome DataBase (HMDB) [52]. This simulates the 
database used to rank candidate annotations in Fig.  2. 
We used the leave-one-Chromatographic Method (CM)-
out approach described in "Experimental setup and data 
preprocessing" Section for meta-training and target-
tasks evaluation. After learning a projection function on 
the target training set, we simulated queries against the 
HMDB database to annotate the molecules on the target 
test set. For each molecule in the target test set, an accu-
rate mass search (10 ppm mass error, the same as  [21]) 
was performed to retrieve all compatible molecules from 
HMDB. To mimic real experimental conditions, we simu-
lated experimental errors in the mass measurement by 
adding random noise to the mass of the unknown mol-
ecule. The random noise had a normal distribution with 
zero mean and a standard deviation of 10/3 ppm so that 
99.7% of the errors were between [−10 ppm, 10 ppm] . 
Random noise below −10 ppm or above 10 ppm was 
truncated to guarantee that the mass search always 
returned the correct molecule as a candidate (note that 
the mass search is based on the noisy mass and not the 
real one). Then, the molecules were ranked using Reten-
tion Time (RT) information according to a z-score com-
puted as

where µ(x̃∗) and σ(x̃∗) represent the GP’s mean and 
standard deviation for the predicted-experimental Reten-
tion Time (RT) pair (x̃∗, ỹ∗) . The intuition for the usage 
of the z-score as ranking metric is to take into account 
not only the agreement between the real experimental 
Retention Time (RT) and the projected value, but also 
the uncertainty in the projection. We focused on mass 

z =
| ỹ∗ − µ(x̃∗) |

σ(x̃∗)
,

queries returning more than three candidates and com-
puted the percentage of results where the true molecule 
was ranked among the top three candidates after z-scor-
ing. To facilitate the interpretation of the results, a base-
line performance for metabolite annotation when using 
only mass information was also computed. In this case, if 
several candidates with the same mass were returned, ties 
were randomly broken.

Results
Retention time prediction with machine learning
MAE results for all tested regressors are summarized 
in Fig.  5. The MEDAE results are qualitatively simi-
lar to MAE ones, and can be found in Fig.  S3 of Addi-
tional file  1. Both MAE and MEDAE are also reported 
in Tables 1, 2 and 3. Figure 5 shows that the DNN mod-
els outperform the other models, with the exception of 
the blender, which has similar results. Specifically, the 
DNN trained with fingerprints achieves a MEDAE of 
17.2± 0.9 s and a MAE of 39.2± 1.2 s when considering 
all molecules, and a MEDAE of 17.2± 0.9 s and a MAE 
of 34.0± 0.9 s when considering retained molecules 
only. To the best of our knowledge, the previous top 
performing models achieved a MAE of 45.6± 0.4 s for 
all molecules  [24], and 39.87 s when only using retained 
molecules [26].

Regarding the other models, they can be sorted from 
lower to higher errors as follows: DKL, XGBoost, and 
lightGBM and CatBoost algorithms, which have similar 
MAE. It is worth noting that DKL obtains similar results 
to those reported in  [24] ( 45.6± 2.4 and 40.8± 2.4 s 
using fingerprints for all molecules and retained mol-
ecules, respectively) and  [26] ( 39.87 s for retained mol-
ecules only).

The differences in the regressors’ performance origi-
nate from the prediction of the RTs for the retained mol-
ecules since the MAE for non-retained molecules is quite 
similar for all models.

Computing the projection between chromatographic 
methods
Comparison of meta‑learned GP models
Figure  6 shows the averaged differences in predictive 
marginal log-likelihood �Lavg for different combinations 
of means and kernel functions. Since the median of all 
models is > 0 , the meta-learning provides some advan-
tage with respect to directly fitting a GP to the target-task 
data. Using a flexible mean function parametrized by a 
DNN does not seem to offer any advantage compared to 
the simpler constant mean. Regarding the influence of 
kernels, although there is no clear winner, the combina-
tion of a squared exponential kernel and a linear kernel 
(which has the largest median �Lavg ), and the polynomial 
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kernel of degree 4 (which has the lowest variability) stand 
out. Since having a low variability is particularly impor-
tant in the context of training from few points, we shall 
use a GP parametrized with a constant mean, and a poly-
nomial kernel of degree 4. That is

Performance of the projection function
Figures 7 and 8 show the MAE and scaled interval scores 
for the projections to four CMs from the PredRet data-
base when using different models. MEDAE results show 
a similar behaviour to those obtained with MAE, and 
hence are shown in Fig.  S4 of Additional file  1. Table  4 
shows these three metrics and the median relative error 
(in %) for the meta-learned GP. Regarding the accuracy 
of the model (MAE and MEDAE), all methods perform 

f (x) ∼ GP

(
c, (xx′ + γ )4

)
.

similarly. However, GPs consistently rank among the two 
best results for most combinations of Chromatographic 
Method (CM) and number of training points. Figure  7 
is particularly revealing since all methods but GPs show 
some large fluctuation (note the large error bars) for 10 
or 20 training points, which suggests that they are more 
sensitive to the presence of outliers.

Regarding the scaled interval scores, piecewise liner 
regression and meta-learned GPs show a better over-
all performance than the other methods, specially when 
compared to GAMs. Meta-learned GPs have the best 
performance in three of four CMs, while piecewise linear 
regression performs better in one of four.

An illustrative example of the projection function built 
using just 10 training points is shown in Fig. 9.

Ranking candidate annotations with the projection function
Table  5 shows the percentage of the results where, 
using the Retention Time (RT) projection function, the 
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true molecule was ranked among the top three can-
didates for those queries with more than three candi-
dates. A comparison with the baseline values when only 
mass information is used (shown between parenthe-
ses in Table  5) reveals that the use of Retention Time 
(RT) information always improves ranking accuracy. 
Reported results in  [21] for 50 training points were 
66.7%, 67.9%, 69.7% and 71.9% for FEM long, FEM 
orbitrap plasma, LIFE old and RIKEN, respectively. 
Considering the standard error, when using 50 anno-
tated molecules our DNN+meta-learning approach 
outperforms  [21] in the FEM long system, while it 
has lower performance in the LIFE old system. The 
DNN+meta-learning approach reaches a global mean 
of 70% for 50 annotated molecules. The number of 
training points affects both the ranking accuracy and 
its variability (standard errors). When using as few as 
10 training points, the global performance decreases to 
68%.

Discussion and conclusions
In this paper we have trained several state-of-the-art 
machine learning regressors to predict small molecules 
Retention Time (RT) using the 80,038 experimental RTs 
from the SMRT dataset. The regressors included DNNs, 
DKL, XGBoost, lightGBM, CatBoost, and a blending 
approach. The models were trained using only molecular 
descriptors, only fingerprints, and both types of features 

simultaneously. Descriptors and fingerprints were gener-
ated with the alvaDesc software. Furthermore, we have 
proposed a meta-learning approach to learn projection 
functions between different CMs from a few training 
points.

Retention time prediction
Deep learning models, regardless the input features 
used for training, clearly outperform the other models. 
When using fingerprints, the DNN achieves a MAE of 
39.2± 1.2 s when considering all molecules, and a MAE 
of 34.0± 0.9 s when considering retained molecules only; 
the previous top performing models achieved a MAE of 
45.6± 0.4 s [24] on all molecules, and 39.87 s when only 
using retained molecules  [26]. This suggests that DNNs 
are better suited for Retention Time (RT) prediction than 
other models. Note that the DKL models, which should 
also exploit the benefits of DNNs, also achieve similar 
results to previously top-performing models, although 
they do not reach the performance of DNN. This may 
imply that the use of recent techniques intended for 
improving the generalization capabilities of DNNs (e.g.   
warm-restarts and SWA) were key for their performance.

Although meta-models are expected to improve the 
base-regressors’ performance, the blender built using 
all regressors has similar performance to that obtained 
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Fig. 6 Averaged differences in predictive marginal log‑likelihood �Lavg for different combinations of means and kernel functions. SE refers to a 
squared exponential kernel and poly to a polynomial kernel of degree 4
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by DNNs (see Fig.  5). To achieve an improvement, 
the base-estimators of the blender should have simi-
lar performance and be as diverse as possible, provid-
ing complementary information to be exploited by the 
meta-regressor. In our blender, the predictions of the 
meta-regressor are mostly influenced by the DNNs, since 
they have the best performance. The fact that the blender 
cannot improve the predictions of the DNNs implies 
that their predictions are almost the same. Indeed, the 
predictions of the three different DNNs are highly cor-
related (e.g., the correlation between the fingerprints’ 
DNN and the descriptors’ DNN is 0.972± 0.003 ). Since 
the fingerprints’ DNN has similar performance and can 
be trained much faster, we can conclude that the use of 
blending has not provided any value for Retention Time 
(RT) prediction.

Figure 5 shows that models that did not employ Bayes-
ian search (lightGBM and CatBoost) perform worse, 
which suggests the usefulness of this procedure. These 
were also the models that benefited from using both 
descriptors and fingerprints; in the other models using 
both types of features together had a performance similar 

to using only the descriptors. In the literature there are 
both works reporting that fingerprints outperform 
molecular descriptors (e.g.,  [21]) and works claiming 
just the opposite (e.g., [24]). Our results slightly favor the 
usage of fingerprints, although it cannot be ruled out that 
the best type of feature depends on the machine learning 
regressor used.

Regarding the experiments where the weights of the non-
retained molecules were varied within the CatBoost regres-
sor, Fig.  5 shows that increasing the importance of these 
molecules (large weights) yields worse MAE results for the 
retained molecules. As expected, large weights yield some 
improvement in the performance of the non-retained mol-
ecules (see Fig. 5). However, the large values of MAE for the 
non-retained molecules indicate that the regressors are not 
able to reliable distinguish non-retained molecules from 
retained ones. This also explains why the usage of different 
weighted CatBoosters did not have the expected impact on 
the blender: it was expected that the blender would match 
the performance of the best regressor for non-retained mole-
cules. However, this has not been observed probably because 
the regressors fail to identify non-retained molecules and 
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Fig. 8 Scaled interval score (the lower, the better) for projections between the predicted RTs and different CMs when using different projection 
models. See Fig. 7 for the meaning of the acronyms

Table 4 Scaled interval score, Median relative error (in %), MAE and MEDAE for projections between the predicted RTs and different 
CMs

Reported median relative errors for 50 training points in [21] were 17%, 14%, 10% and 8% for FEM long, FEM orbitrap plasma (Fem orb. in the table), LIFE old and 
RIKEN, respectively

CM Metric\No. training points 10 20 25 30 40 50

FEM 
long

Scaled interval score 2.27± 1.03 1.70± 0.19 1.68± 0.21 1.60± 0.15 1.55± 0.09 1.51± 0.06

Median relative error (%) 21.64± 5.32 17.62± 2.19 17.77± 2.86 16.14± 1.40 16.76± 1.90 16.98± 1.36

MAE (s) 301.28± 31.53 283.98± 17.02 283.02± 20.50 281.01± 23.22 269.25± 21.48 262.52± 9.47

MEDAE (s) 237.42± 27.99 223.17± 11.71 219.34± 17.12 218.66± 21.25 210.91± 18.16 202.64± 9.31

Fem 
orb.

Scaled interval score 1.90± 0.21 1.80± 0.16 1.83± 0.10 1.79± 0.13 1.76± 0.06 1.73± 0.06

Median relative error (%) 14.04± 1.32 12.73± 2.12 12.18± 0.86 11.67± 1.27 11.13± 0.88 11.76± 1.35

MAE (s) 129.99± 10.55 118.65± 10.36 114.31± 7.85 114.45± 8.02 107.89± 6.63 113.77± 10.90

MEDAE (s) 90.68± 12.43 74.3± 11.86 74.01± 12.39 70.64± 6.62 64.80± 9.54 66.2± 8.99

LIFE 
old

Scaled interval score 1.70± 0.15 1.53± 0.08 1.56± 0.08 1.55± 0.08 1.48± 0.05 1.47± 0.03

Median relative error (%) 11.46± 1.93 9.97± 0.82 10.18± 1.00 9.88± 0.66 9.22± 0.61 9.26± 0.53

MAE (s) 17.74± 2.31 15.50± 0.91 15.69± 1.74 15.07± 1.26 14.32± 1.19 14.01± 1.35

MEDAE (s) 14.18± 2.65 12.01± 1.66 12.70± 2.15 11.31± 1.53 10.71± 1.57 9.93± 1.43

RIKEN Scaled interval score 1.61± 0.05 1.56± 0.07 1.55± 0.07 1.52± 0.03 1.52± 0.02 1.50± 0.02

Median relative error (%) 6.64± 0.75 6.13± 0.40 5.85± 0.31 5.81± 0.28 5.79± 0.31 5.81± 0.33

MAE (s) 7.16± 0.50 6.72± 0.29 6.50± 0.34 6.69± 0.26 6.55± 0.32 6.62± 0.52

MEDAE (s) 5.47± 0.65 4.91± 0.33 4.64± 0.33 4.80± 0.29 4.71± 0.37 4.86± 0.54
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they tend to predict RTs as if the molecule was retained, even 
if it is not. This can be confirmed by inspecting the perfor-
mance of the classifier trained to predict if a molecule will be 
retained or not (see "Preprocessing of descriptors and finger-
prints" Section). Although the classifier has large specificity 
( 0.9953± 0.0005 ), precision and recall are low ( 0.74 ± 0.03 
and 0.512± 0.016 , respectively), which highlights the diffi-
culty in properly identifying non-retained molecules.

Meta‑learning‑based projections
The experiments suggest that the method to project the 
predicted RTs to a specific Chromatographic Method 
(CM) is able to provide proper projections using as lit-
tle as 10 or 20 training points. In this range of training 
points, the accuracy of the meta-learned-GP shows simi-
lar or slightly better MAE and MEDAE than other state-
of-the-art methods (Fig.  7). Regarding the prediction 
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Fig. 9 Projections from the predicted RTs to four different CMs from the PredRet database using the proposed meta‑learning approach. Red points 
and blue crosses indicate train and test points respectively. The black line is the predictive mean of the GP while the grayed region indicates the 
predictive 95% interval

Table 5 Percentage of results where the true molecule was ranked among the top three candidates using the meta‑learning method

Reported percentages in [21] were 66.7%, 67.9%, 69.7% and 71.9% for FEM long, FEM orbitrap plasma (Fem orb. in the table), LIFE old and RIKEN, respectively. Values 
between parentheses under the name of the Chromatographic Method (CM) represent the baseline performance when only mass information is used

CM No. training points 10 20 30 40 50

FEM long 71.07± 5.11 72.75± 4.40 74.42± 5.29 75.27± 2.25 76.10± 2.92

(59.57± 6.73)

FEM orb. 64.96± 10.96 67.13± 10.04 65.25± 8.41 63.06± 9.07 67.04± 9.40

(53.57± 7.66)

LIFE old 62.99± 5.21 61.38± 5.13 60.50± 6.68 58.57± 4.83 59.86± 3.36

(51.44± 7.26)

RIKEN 72.89± 8.59 73.21± 4.37 74.44± 4.17 77.61± 4.04 75.73± 3.81

(53.62± 5.77)
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intervals, it has the best performance in three of the four 
CMs (Fig. 8).

Being able to train the projection model from a few 
training points is key for real world applications, since it 
avoids the need to identify a large number of molecules. 
Note that in this small-data regime, the predictions are 
mainly driven by the prior learned during meta-learn-
ing. This can be seen by looking at the upper confidence 
interval for the FEM long Chromatographic Method 
(CM) in Fig.  9, which seems larger than needed. With 
more training points, the GP is flexible enough to reduce 
uncertainty around the training points, adjusting to the 
actual dispersion of the Chromatographic Method (CM), 
as shown by the trend for the FEM long system in Fig. 8. 
Remarkably, and although the scaled interval scores tend 
to decrease with the number of training points, they are 
quite stable for the other systems. The ability of GPs of 
generating credible prediction intervals for the projec-
tions can be used to obtain probabilistic scores for the 
putative annotations, as shown in "Ranking candidate 
annotations with the projection function" Section.

Table  5 shows that, when using 50 training points, our 
projection method ranks the correct identity among the top 
three candidates in 70% of the cases, at a similar level than 
other projection methods [21]. When decreasing the num-
ber of training points to just 10 samples, the percentage is 
68% , while with 30 is 69% . This shows that meta-learning 
enables the creation of projection functions from just a few 
known metabolites. However, Table  5 also reveals large 
standard errors, which suggest that the projection functions 
are highly dependent on the training inputs.

An accurate predictive model and a projection function 
that can be learned from as few as 10 identified metabo-
lites permit building a tool to support metabolite annota-
tion following the scheme presented in Fig. 2. We intend 
to integrate such a tool into CEU Mass Mediator  [5], a 
metabolite annotation platform that has 332,665 metabo-
lites in its database, of which approximately 250,000 have 
no RT information in the SMRT dataset. When RTs are 
available, it will only be necessary to use the projection 
function to map the experimental Retention Time (RT)s 
of the database to the Retention Time (RT) of the Chro-
matographic Method (CM) of a given experiment. When 
no Retention Time (RT) is available in the database, it 
will also be necessary to predict it using the best model 
achieved in this work (the DNN trained with fingerprints). 
The user of CEU Mass Mediator will only need to pro-
vide (1) the experimental RTs of the known molecules, 
whose identity should also be specified (by indicating their 
PubChem ID, InChI Key or similar), and (2) both the m/z 
and experimental RTs of the molecules to be annotated. 
This information can be uploaded to the tool’s web page 
using text format. CEU Mass Mediator will then return 

the annotations compatible with the experimental data, 
ranked accordingly to their z-scores.

Note that the use of the CEU Mass Mediator data-
base avoids running the DNN in real-time. On the other 
hand, the projection method is highly efficient thanks 
to the meta-learning approach: the learning of the GP 
prior parameters is accomplished in an offline task, and 
the target-task that has to be executed online to compute 
the posterior distributions runs in just tenths of seconds. 
Hence, both the predictive model and the meta-learned 
projection function can be integrated into the workflow 
of Fig.  2 with negligible computational overhead. Fur-
thermore, that workflow could be combined with an in 
silico MS/MS-based annotation approach when MS/MS 
data is available. In that scenario, the top predicted can-
didates by the model could be feed into tools that match 
them to the experimental MS/MS data, followed by a 
reranking based on both RT and MS/MS predictions.
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