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Abstract 

A plethora of AI-based techniques now exists to conduct de novo molecule generation that can devise molecules 
conditioned towards a particular endpoint in the context of drug design. One popular approach is using reinforce-
ment learning to update a recurrent neural network or language-based de novo molecule generator. However, 
reinforcement learning can be inefficient, sometimes requiring up to  105 molecules to be sampled to optimize more 
complex objectives, which poses a limitation when using computationally expensive scoring functions like dock-
ing or computer-aided synthesis planning models. In this work, we propose a reinforcement learning strategy called 
Augmented Hill-Climb based on a simple, hypothesis-driven hybrid between REINVENT and Hill-Climb that improves 
sample-efficiency by addressing the limitations of both currently used strategies. We compare its ability to optimize 
several docking tasks with REINVENT and benchmark this strategy against other commonly used reinforcement learn-
ing strategies including REINFORCE, REINVENT (version 1 and 2), Hill-Climb and best agent reminder. We find that 
optimization ability is improved ~ 1.5-fold and sample-efficiency is improved ~ 45-fold compared to REINVENT while 
still delivering appealing chemistry as output. Diversity filters were used, and their parameters were tuned to over-
come observed failure modes that take advantage of certain diversity filter configurations. We find that Augmented 
Hill-Climb outperforms the other reinforcement learning strategies used on six tasks, especially in the early stages of 
training or for more difficult objectives. Lastly, we show improved performance not only on recurrent neural networks 
but also on a reinforcement learning stabilized transformer architecture. Overall, we show that Augmented Hill-Climb 
improves sample-efficiency for language-based de novo molecule generation conditioning via reinforcement learn-
ing, compared to the current state-of-the-art. This makes more computationally expensive scoring functions, such as 
docking, more accessible on a relevant timescale.
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Introduction
Many generative model techniques and architectures 
applied to de novo molecule generation exist. These 
models range from purely symbolic approaches such as 
genetic algorithms [1, 2] to more recent machine learn-
ing (ML) approaches such as recurrent neural networks 
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(RNNs) [3–8], transformers [9–11], variational autoen-
coders [12–15], generative adversarial networks [16–18], 
graph neural networks [19, 20] and hybrid approaches 
that use ML to guide reinforcement learning (RL) in a 
heuristic action space [21]. These generative models can 
produce valid and novel molecules [22, 23] and condi-
tion molecule generation towards a particular endpoint 
[22] (e.g., predicted bioactivity towards a protein target 
[4]) via optimization techniques such as, RL [4, 21, 24], 
Bayesian optimization [12, 14], molecular swarm optimi-
zation [15] and Monte Carlo tree search [2, 6]. Although 
generative models still face many challenges for trusted 
and routine integration into drug discovery pipelines 
including practical relevance and more comprehensive 
evaluation [25].

Of the more recent ML-based approaches to de novo 
molecule generation, RNNs were one of the first to 
appear with the seminal approaches being published 
about 5 years ago. One study which received wide inter-
est was by Segler et  al. [3] who fine-tuned an RNN on 
molecules of biological interest to generate molecules 
containing similar properties de novo. Another study, by 
Olivecrona et al. [4] instead used RL to update the RNN 
to generate molecules de novo that maximized predicted 
properties (e.g., predicted bioactivity of molecules). 
These results were obtained by representing molecules 
using the SMILES language [26] which emulates the 
RNN’s designed application for use in natural language 
processing [27, 28]. When trained on a large dataset of 
SMILES (>  105), an RNN can predict the next symbol in 
a sequence conditional upon previously seen symbols. 
Thus, by supplying a start symbol, new symbols can be 
sampled from the probability distribution corresponding 
to the next symbol (output by the RNN), which is then 
recursively fed back into the network resulting in de novo 
molecules. Despite a wave of newer approaches since 
(e.g., JT-VAE [13], DrugEx [29], GENTRL [30], GraphIN-
VENT [20, 31]), RNNs are still frequently used and inves-
tigated for de novo molecule generation (e.g., [32–34]). 
Furthermore, they still match the state-of-the-art on sev-
eral de novo molecule generation benchmarks [22, 23, 35, 
36].

Although it is possible to optimize RNN de novo mol-
ecule generation via fine-tuning on a smaller dataset of 
molecules relevant to a particular endpoint (as in [3]), 
such a priori knowledge is not always available or when 
available, must be used carefully as to not bias de novo 
molecule generation too much (e.g., resulting in a lack 
of novelty [37] or very close similarity to fine-tuning 
datasets which must be monitored [38]). Reinforcement 
learning (RL) on the other hand can be used to optimize 
de novo compounds to maximize/minimize a numeri-
cal reward which can be provided by either a single or 

a combination of scoring functions, and it is therefore 
limited by the accuracy and reliability of scoring func-
tions used and their relevance to the respective objective 
[39, 40]. Several RL strategies have been combined with 
RNNs including Hill-Climb (HC) [22, 41], REINFORCE 
[42] (used in [5]) and REINVENT [4]. Two of these RL 
strategies (REINVENT and HC) have been shown to 
rank top one or two in optimization tasks compared to 
other generative models [22, 35, 36]. Monte Carlo tree 
search approaches have also been proposed to search a 
trained RNN’s sample space [6, 43, 44]; however, no RNN 
parameters are updated (no RNN learning takes place) 
during this process and so task optimization is rather an 
optimized search within the RNNs current generative 
domain.

Despite excellent performance on benchmarks, RNN 
de novo molecule optimization using RL can be very 
sample-inefficient often requiring 10 s or 100 s of thou-
sands of molecules to optimize a task. For example, 
163,840 molecules were sampled during HC optimiza-
tion for GuacaMol benchmark tasks [22] and 192,000 
molecules were sampled during REINVENT optimiza-
tion of DRD2 predicted activity [4] (although neither 
study specified at which point the task was ‘sufficiently’ 
optimized, which could have been before optimization 
finished). While low sample-efficiency is not a problem 
for easily computed scoring functions such as property 
calculation, it significantly hinders the use of scoring 
functions requiring a significant amount of computation 
such as molecular docking and computer aided-synthe-
sis planning. This is becoming increasingly important 
with recent growth in interest in using molecular dock-
ing scoring functions to guide de novo molecule genera-
tion [45–53]. This approach has shown to result in more 
diverse and novel compounds with a broader coverage 
of known active space than an equivalent QSAR model 
trained on known ligands [52]. Other studies have used 
ML to model molecular docking or other physics-based 
scoring functions which is less computationally expensive 
[35, 54, 55]. However, use of a model of a model reduces 
the advantages of such scoring functions by being less 
able to extrapolate novel chemical space and adds predic-
tion uncertainty on top of pre-existing inaccuracies [56, 
57]. Therefore, it is attractive to improve the sample-effi-
ciency of RL optimization to enable routine use of such 
docking-based scoring functions directly.

Previous work has explored RL strategies and param-
eters for RNNs de novo molecule generation to varying 
degrees. Niel et  al. [41] compared different RL strate-
gies (including REINFORCE, HC and REINVENT) and 
optimized a selection of tasks. However, the difference 
in sample-efficiency was not clear and their code was 
not published. A comparison of REINVENT versions 1.0 
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and 2.0 shows that the default sigma parameter value was 
increased. This effectively increases the reward contribu-
tion compared to the prior contribution and theoretically 
improves sample-efficiency, although this was not dis-
cussed in the publication [58]. Fialková et al. [59] inves-
tigated more significant modifications to the REINVENT 
loss function which did not result in any significant 
improvement. Meanwhile, Atance et  al. [20] modified 
the loss function by adding a best agent reminder (BAR) 
mechanism to the loss function resulting in ‘significantly 
improved learning’ (although this was not further quanti-
fied by the authors and it pertained to use on a graph-
based generation model).

Here, with the aim to improve the sample-efficiency 
of SMILES-based RNNs, we make a very simple change 
to the REINVENT strategy to ameliorate overpowered 
regularization by introducing elements of the HC strat-
egy. We call this novel hybrid approach Augmented Hill-
Climb (AHC) and investigate it’s use for RNN de novo 
molecule generation. We further compare AHC to pre-
viously mentioned RL strategies that are implemented 
in published studies and make the code freely accessible 
[60].

Methods
The evaluation of AHC and comparison to other RL strat-
egies was built around five key experiments which are 
summarised in Fig. 1 (the details of which follow in the 
remainder of the Methods): Experiment 1, comparison 
between AHC and REINVENT on the ability to minimize 
the docking score against the  D2 receptor (DRD2) over a 
very limited number of RL updates. Experiment 2, com-
parison between AHC and REINVENT on the ability to 
minimize the docking score against four different recep-
tors over an extended number of RL updates relative to 
Experiment 1. Experiment 3, investigation of diversity 
filters and their parameters for use in combination with 
AHC by optimizing toy tasks proposed by the GuacaMol 
benchmark suite [22]. Experiment 4, benchmark compar-
ison between AHC and other RL strategies on six tasks of 
varying difficulty. Experiment 5, benchmark comparison 
between AHC and REINVENT on alternative language-
based generative models (a transformer architecture and 
reinforcement learning stabilized transformer architec-
ture) on the same benchmark tasks as Experiment 4.

Training data
RNNs were trained using either a modification of the 
MOSES dataset or the GuacaMol dataset. Firstly, the 
MOSES dataset [23] is derived from ZINC15 clean leads 
[61] and contains a library of ‘drug-like’ small organic 
molecules. It is designed to benchmark generative model 
de novo molecule generation. The MOSES dataset 

applies several filters during curation including: molecu-
lar weight between 250 and 350 Da; number of rotatable 
bonds not greater than 8; XlogP [62] not greater than 3.5; 
no atoms besides C, N, S, O, F, Cl, Br, H; no cycles larger 
than 7 members; molecules adhering to custom medici-
nal chemistry [63, 64] and PAINS filters [65]. In addition, 
charged species are removed; here however, we deviate 
from this curation by neutralising charged species and 
hence avoid a bias towards non-protonatable groups. 
To distinguish this from the original MOSES dataset, 
we refer to this as MOSES neutralized  (MOSESn) [52]. 
This resulted in a training set of 2,454,087 molecules. 
The GuacaMol train dataset [22] (1,273,104 molecules) 
is derived from ChEMBL24 and contains real molecules 
both in the ‘drug-like’ domain and others such as pep-
tides and natural products. This dataset was designed 
to benchmark both generative model de novo molecule 
generation and subsequent objective optimization. The 
GuacaMol dataset applies the following filters during 
curation: salt removal; charge neutralization; molecules 
with SMILES strings shorter than 100 characters; no 
atoms besides H, B, C, N, O, F, Si, P, S, Cl, Se, Br, and 
I. Therefore, the GuacaMol dataset results in a train-
ing set with a much broader variety of chemotypes than 
 MOSESn.

Recurrent neural network
Recurrent neural networks  used in this work are deep 
neural networks composed of layers of either long short-
term memory units or gated recurrent units, which store 
and transfer information from one state to the next. In de 
novo molecule generation, SMILES symbols are one-hot 
encoded into a binary vector which is used as input to the 
network. These networks are then trained to predict the 
conditional probability of a SMILES subsequent symbol 
given a sequence of previously seen SMILES symbols. 
This is achieved by training the network using maximum 
likelihood estimation (equivalent to minimizing the neg-
ative log likelihood), whereby the model must maximize 
the likelihood assigned to the correct symbol x at time 
t conditional upon all previously observed symbols. The 
resulting loss function L parameterized by the network 
parameters θ is shown in Eq.  1. For further details we 
refer the reader to [4].

The RNN implemented in this work is the same as [3, 4, 
58, 66]. Specifically, three RNN configurations were used, 
either trained on  MOSESn or GuacaMol train. The first 
RNN configuration consisted of an embedding layer of 
size 128 and three gated recurrent unit (GRU) layers of 

(1)L(θ) = −

T
∑

t=0

logP(xt |xt−1 . . . x0)
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size 512 with no dropout—implemented using the code 
shared in the original work [4]. This implementation 
was only used with the original REINVENT RL strat-
egy in experiment 2, as a comparison to older work. The 
second configuration consisted of an embedding layer 
of size 256 and three long short-term memory (LSTM) 
layers of size 512 with no dropout—consistent with the 
REINVENT 2.0 implementation [58]. The third configu-
ration consisted of three LSTM layers of size 512 with a 
dropout rate of 0.2, consistent with the GuacaMol imple-
mentation [22] as found on the corresponding GitHub 
repository [67]. The first and second configurations were 
trained on the  MOSESn dataset for 5 epochs using a 
batch size of 128 with an ADAM optimizer and learning 

rate of 0.001, while the third configuration was trained on 
GuacaMol train for 10 epochs using a batch size of 512 
with an ADAM optimizer and learning rate of 0.001.

Transformer
Two transformer encoder architectures were used in this 
work. The first is the original proposed transformer (Tr) 
encoder [68]. The second is a gated transformer (GTrXL) 
encoder adapted from [69] in an attempt to stabilize the 
transformer under RL conditions. The encoder layer of 
this second architecture relocates layer normalization 
before the respective sub-layer (i.e., multi-head attention 
or feed-forward network) and employs a GRU style gating 
mechanism in place of the residual connection. Notably 
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Fig. 1 Schematic of the five experiments conducted in this work with the focus of each experiment in bold face. In each case the Prior and Agent 
refer to an RNN. (1) Comparison of AHC to REINVENT on a single docking task over 100 RL updates. (2) Comparison of AHC to REINVENT on four 
different docking tasks over 500 RL updates. (3) Diversity filter and parameter search for use in combination with AHC on three toy tasks proposed 
by GuacaMol benchmark suite. (4) Benchmark comparison of AHC to other RL strategies across a six optimization tasks of varying difficulty. (5) 
Comparison of AHC to REINVENT on two different transformer architectures on six benchmark tasks
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the original adaption was applied to Transformer-XL [70] 
which contains a memory mechanism to expand con-
text for larger language tasks. This memory mechanism 
was omitted in the current work for simplicity and due 
to the shorter nature of SMILES strings which are typi-
cally 20–100 characters long compared to  103–104 in 
large language tasks. Therefore, we simply refer to this 
model as gated transformer (GTr). Lastly, both encoder 
architectures had a final feed-forward layer to predict 
the probability over symbols in the vocabulary. In both 
cases, character masking was used to train the encoder in 
an autoregressive fashion (similar in concept to GPT [71] 
to predict the next symbol in the SMILES sequences by 
attending over all previously seen symbols. The loss func-
tion was the same as with the RNN shown in Eq. 1.

The hyperparameters were the same for both the trans-
former encoder architectures. More specifically, each 
consisted of 4 encoder layers with hidden dimension 512, 
each with 8 multi-attention heads and finally a feed-for-
ward network of hidden dimension 1024. A dropout of 
0.1 was used throughout. Each model was then trained 
on the GuacaMol training dataset for 5 epochs with a 
batch size of 128 and the ADAM optimizer with a learn-
ing rate of 0.001. A performance comparison of these 
models to RNNs according to commonly used metrics 
can be found in Additional file 1: Tables S1-2.

Reinforcement learning
We will in the following briefly review reinforcement 
learning strategies for recurrent neural networks in order 
to embed our methodological changes into context.

RL introduces the paradigm of an episodic task where 
an agent (here the RNN) decides an action ( at ∈ A ) (here, 
the next SMILES symbol) at time step t based on interac-
tion with an environment which informs the agent on the 
current state ( st ∈ S ) (here, the SMILES string) and cor-
responding reward ( rt ) (here, computed at the end of the 
episode ( RT ∈ [0, 1] ) by the scoring function) in a Markov 
Decision Process [72]. Different RL strategies can then be 
used to describe how to navigate this landscape. These 
usually fall into one of two categories: value-based strat-
egies focus on estimating the value of an action given a 
particular a state (or value of being in a state) and select-
ing an action so as to maximize the final estimated return 
( G =

∑T
t rt ), while policy-based RL focusses on iden-

tifying the best policy ( π ) for selecting actions without 
necessarily consulting a value function to estimate the 
absolute value of that state/action.

The practical nature of SMILES-based RNN molecule 
generation complicates the use of value-based RL strat-
egies as incomplete SMILES generated at different time 
steps do not always result in a valid molecule for which 
a reward can be assigned. In contrast, policy methods do 

not require a reward for each action/state and as such are 
typically used in this setting [4, 5, 22]. Furthermore, as 
discussed by Olivecrona et al. [4], an RNN is first trained 
on a large dataset of example molecules which effectively 
constitutes a prior policy for molecule generation, thus 
only small changes to the prior policy may be needed.

As a simple baseline strategy, we implemented REIN-
FORCE [73] which is also used in [5, 41]. This is an ‘all-
actions’ policy-based method because the policy update 
only requires a sum over all actions and the return for the 
whole episode (final molecule)—important due to poten-
tially invalid partial smiles during generation. The loss 
function is described in Eq. 2 where it can be interpreted 
as a scaling of the policy (here the negative log likelihood, 
also described in Eq. 1) by the reward given to the com-
plete molecule ( RT).

In this work, we implemented REINVENT [4, 58] 
(depicted in Fig.  2) which is a popular strategy used in 
the literature, and the strategy we used in our previous 
work [52]. REINVENT is a REINFORCE type strategy 
that explicitly regularizes optimization by adding a prior 
policy to the loss function. This prior policy is derived 
by computing the negative log likelihood from a fixed 
copy of the initially trained RNN (the prior). This regu-
larization ensures that the RNN being optimized (the 
agent) maintains what was initially learnt by the prior 
i.e., how to generate valid SMILES corresponding to the 
training distribution. A combination of this prior policy 
and scaled reward (scaled by scaling coefficient sigma 
(σ)) is then used to define an augmented likelihood, as 
shown in Eq.  3. This augmented likelihood then acts as 
a target policy for the agent and the loss function is now 
defined as the difference between the agent policy and 
target policy, shown in Eq. 4. Note that we have replaced 
−
∑T

t=0 logP(at |st−1) by the equivalent term logP(A).

Recently a strategy was proposed that offered mod-
est performance improvement over REINVENT called 
‘best agent reminder’ (BAR) [20], although this was 
implemented on a graph-based generative model. We 
have implemented it for an RNN using the same prin-
ciple to compare it to the other strategies used here as 
another baseline strategy. This mechanism keeps track 
of the best agent so far, updating it periodically. During 
optimization, a batch of molecules m (of batch size S) is 

(2)L(θ) =

[

−

T
∑

t=0

logP(at |st−1)

]

RT

(3)logP
U
(A) = logPprior(A)+ σRT

(4)L(θ) =
[

logP
U
(A)− logPagent(A)

]

2
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sampled from both the current agent ( Magent ) and best 
agent ( Mbest ), to serve as a reminder of high scoring mol-
ecules. Although the loss function is the same as Eq. 4 for 
the respective agents, the loss weighted average is taken 
across agents scaled by α, as shown in Eq. 5. This effec-
tively acts to minimize the agent policy difference to the 
‘best agent optimal policy’ and the ‘prior optimal policy’, 
scaled by α.

Hill-Climb (HC) [41] is an alternative policy-based 
strategy benchmarked in [22, 36] that shows state-of-the-
art or near state-of-the-art performance. HC can also be 
interpreted as a form of iterative fine-tuning (where fine-
tuning molecules are selected by the scoring function 
rather than e.g., known activity against a certain target). 
The agent RNN first samples a batch of molecules, and 
then the RNN is fine-tuned using the same loss func-
tion as Eq. 1 but using only the top k molecules from the 
batch, as ranked according to some reward assigned to 
each molecule. This algorithm is depicted in the top part 
of Fig. 2.

As the RL strategies REINFORCE and HC are not 
explicitly regularized (as they are in REINVENT, BAR 
and the method presented here, AHC), cost terms can 
be added to the loss function to achieve regularization. 
This step is important in practice to maintain some simi-
larities to the training distribution but also to not cata-
strophically forget chemical principles which will result 

(5)

L(θ) =
(1− α)

S

∑

m∈Magent

[

logP
Uprior

(A)− logPagent(A)
]

2

+
α

S

∑

m∈Mbest

[

logP
Ubest

(A)− logPagent(A)
]

2

in invalid structures (due to valency errors etc.). To assess 
the effectiveness of this, we evaluated the addition of the 
Kullback–Leibler (KL) divergence between the prior and 
agent scaled by a scaling coefficient λ, as shown in Eq. 6 
and as implemented in [41, 74]. This adds a constraint to 
ensure the distribution of agent action probabilities does 
not differ too much from the distribution of prior action 
probabilities.

Unless otherwise specified, the hyperparameters used 
for the different RL strategies are those reported in each 
individual study. They are listed in Additional file  1: 
Table  S3. The number of RL update steps was adjusted 
to result in an approximately equal number of molecules 
sampled during training. Hill-Climb* was included to 
investigate the effect of a smaller batch size in line with 
AHC.

Augmented Hill‑Climb
In this work, we define a new strategy we call Augmented 
Hill-Climb (AHC), depicted in Fig. 2 with its constituent 
parts shown at the top (for HC), and bottom (for REIN-
VENT). This strategy is a simple hybrid between the HC 
and REINVENT strategies where the loss is calculated as 
in REINVENT (by defining the augmented likelihood) 
but only on the top k molecules, as ranked by reward as in 
HC. The rationale behind this strategy is based on prac-
tical limitations of the REINVENT loss function: when 
low scoring molecules ( RT → 0 ) are sampled the score 

(6)

C(KL) = �KLE
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�
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Fig. 2 Depiction of the REINVENT, Hill-Climb (HC) and Augmented Hill-Climb (AHC) optimization algorithms and subsequent loss functions L as 
parameterized by network parameters θ. AHC is a hybrid algorithm that combines elements of REINVENT and HC
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contribution goes to zero and logP
U
(A) ≈ logPprior(A) . 

In this situation, as the loss function (Eq. 4) is a distance, 
the agent policy will, in-fact, trend back towards the 
prior policy which may negate useful learnings. This situ-
ation of low scoring molecules being present will occur 
especially either early in the learning process or when a 
difficult or highly constrained scoring function is used. 
Therefore, the heavy regularization effect of low scoring 
molecules significantly contributes to slow learning in 
these situations. In turn, focussing learning only on the 
high scoring molecules ( RT → 1 ) will improve learning. 
It is worth noting that, high scoring molecules are still 
regularized by the prior policy, as shown in Eq. 3, ensur-
ing prior learnings are not ‘forgotten’.

Diversity filters
Applying diversity filters (DFs) is a way of penalizing the 
reward for an associated molecule based on the molecu-
lar similarity to previously generated molecules resulting 
in diminishing returns for exploitation, therefore encour-
aging exploration outside of local minima. Blaschke et al. 
[75] introduced several DFs for RNN molecule genera-
tion based on different measures of similarity including 
compoundsimilarity (Tanimoto similarity of compound 
ECFP [76] fingerprints), identicalmurckoscaffold (match-
ing Bemis-Murcko scaffolds [77]), identicaltopologicals-
caffold (matching Bemis-Murcko scaffolds with all atoms 
treated as carbon atoms and bonds as single bonds) and 
scaffoldsimilarityatompair (Tanimoto similarity of scaf-
fold atom pair fingerprints [78]). More specifically, if gen-
erated molecules receive a high enough score by a scoring 
function (minimum score threshold) then the molecules 
are added to bins based on similarity as defined by any 
of the above-mentioned DFs. Molecules assigned to a 
bin are subsequently penalized according to a binary, sig-
moid or linear score transformation (output mode) based 
on the maximum allowed bin size. Blaschke et  al. [75] 
showed that DFs result in increased diversity of de novo 
compounds as measured by an increased number of ana-
logues to known molecules.

In addition, we investigated the use of the following 
DFs:

1) unique—a simple DF to serve as a baseline. This DF 
transforms a molecule’s score to zero if the molecule 
is non-unique.

2) occurrence—This DF linearly penalizes non-unique 
molecules based on the number of previous occur-
rences, which acts as a more lenient version of the 
unique DF. The score is transformed according to 
the number of previous occurrences ( Occ ) beyond 
an allowed tolerance ( Tol ) until a hard threshold 

is reached, referred to as the buffer ( Buff  ). This is 
shown in Eq. 7.

3) scaffoldsimilarityecfp—This DF is a modification to 
scaffoldsimilarityatompair introduced in [75] that 
uses the same parameters except for measuring simi-
larity based on the Tanimoto similarity of the Bemis-
Murcko [77] scaffold ECFP4 [76] fingerprints as 
implemented by RDKit [79].

The DFs and parameters used in this work (i.e., DF1, 
DF2 and DF3) for tasks other than the parameter search 
in Experiment 3 are shown in Additional file 1: Table S4.

Scoring functions and benchmarking tasks
Several scoring functions were used in this work to guide 
optimization and benchmark RL strategies. These are 
summarized in Table 1 and are described in more detail 
in the subsequent sections. All scoring functions were 
implemented using the MolScore platform [60].

Target preparation and docking tasks
Four different targets were used to setup molecular dock-
ing scoring functions to evaluate docking score opti-
mization by RNNs in combination with RL strategies 
(Experiments 1, 2, 4 and 5 in Fig. 1). The four targets and 
corresponding x-ray crystal structures used in the dock-
ing tasks were  D2 (DRD2, PDB: 6CM4 [80]), µ (OPRM1, 
PDB: 4DKL [81]),  AT1 (AGTR1, PDB: 4YAY [82]) and 
 OX1 (OX1R, PDB: 6TO7 [83]) receptors.

All target crystal structures were first prepared using 
Schrodinger Protein Preparation Wizard [84] using 
default parameters which included: addition of protein 
and ligand hydrogens (pH 7 ± 2, Epik [85]), optimiza-
tion of hydrogen bond networks (pH 7, PROPKA [86]), 
restrained minimization using the OPLS3e force field 
[87], and removal of  waters (except for OPRM1 which 
performed better retrospectively with crystallographic 
waters, data not shown). A default grid was defined using 
the respective co-crystallized ligands as the centre except 
for OX1R which had additional positional restraints 
defined based on consensus sub-pocket occupation by 
the following overlayed co-crystallized ligands, Suvorex-
ant (PDB: 6TO7), Filorexant (PDB: 6TP6), Daridorexant 
(PDB: 6TP3), GSK1059865 (PDB: 6TOS), ACT462206 
(PDB: 6TP4), Compound-16 (PDB: 6TQ4), Com-
pound-14 (PDB: 6TQ6), EMPA (PDB: 6TOD) and Lem-
borexant (PDB: 6TOT) [83].

(7)

Filtered reward =







RT ×
Occ−(Tol+Buff)

Tol+Buff
if Tol < Occ < Buff

RT if Occ ≤ Tol

0 if Occ ≥ Buff
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Before docking, ligands were prepared using Schro-
dinger LigPrep [88] to enumerate unspecified stereo-
centres, tautomers and protonation states, with up to 8 
variants generated per molecule, based on a pH range 
of 7 ± 1. Variants were then docked using Glide-SP [89] 
with default settings, except for OX1R where docked 
poses were only accepted if they satisfied four out of 
five grid constraints. The lowest (i.e., best) docking 
score achieved by any molecule variant was returned as 
the final docking score. Docking score was normalized 
between the values of 0 and 1 based on all previously 
observed docking scores.

Retrospective performance was assessed by docking 
known active and inactive molecules extracted for each 
human target from the ExCAPE-DB [90]. When more 
than 10,000 labelled molecules were present, a random 
subset of 10,000 molecules was taken. To better repre-
sent de novo molecules docked which adhere to prop-
erty constraints imposed by  MOSESn, molecules above 
500  Da were filtered out, stereo information removed, 
and any resulting duplicates removed. The final num-
ber of downloaded and docked molecules is shown 
in Additional file  1: Table  S5. Classification accuracy, 
precision and recall were assessed by varying docking 
score decision thresholds (Additional file 1: Figure S1). 
In each case a threshold corresponding to ~ 80% preci-
sion was identified, i.e., ~ 80% of molecules below this 

threshold are true actives retrospectively. The typical 
recall of true actives at this level was ~ 10–30%.

Diversity filter parameter optimization tasks
To investigate the effect of DF and parameter choice, 
less computationally expensive scoring functions were 
required than docking. Therefore, three diverse tasks 
from the GuacaMol benchmarking suite [22] were 
chosen and re-implemented according to the original 
work [22]. The goal the Aripiprazole similarity task is to 
optimize similarity to Aripiprazole beyond a similarity 
threshold in order to generate as many similar enough 
compounds as possible. The goal of the  C11H24 isomer 
task is to generate all 159 molecules with a molecular 
formula of  C11H24, a task involving a more limited pool 
of molecules. The goal of the Osimertinib MPO task is 
to optimize similarity to Osimertinib to a certain extent 
(molecules are penalized if too close) and that both 
lipophilicity and polarity are within a suitable range. 
The performance of DF parameters was measured by 
the area under the training curve of three different end-
points: uniqueness (number of unique molecules gener-
ated, a proxy of chemical space explored and symptom 
of mode collapse), goal (the score returned by the scor-
ing function/s) and run time (a practical measure to 
identify if some DFs are slower to compute).

Table 1 Summary of all objectives/tasks used in this work and for which experiment (see Fig. 1)

Experiment Aim Objective type Objective target Performance measure

1 Compare REINVENT and AHC for varying 
values of σ

Docking DRD2 Docking score & uniqueness

2 Compare REINVENT and AHC against 
different target systems

Docking DRD2 Docking score & uniqueness

Docking OPRM1 Docking score & uniqueness

Docking AGTR1 Docking score & uniqueness

Docking OX1R Docking score & uniqueness

3 Investigate and identify optimal DF and 
respective parameters for use with AHC

Similarity Aripiprazole Tanimoto similarity, uniqueness & wall 
time

Isomer C11H24 Isomer score, uniqueness & wall time

Similarity & PhysChem (MPO) Osimertinib MPO score, uniqueness & wall time

4 & 5 Benchmark AHC to other commonly 
used RL strategies

PhysChem Heavy atoms # Heavy atoms, validity, uniqueness & wall 
time

Similarity Risperidone Tanimoto similarity, validity, uniqueness & 
wall time

Activity DRD2 Predicted activity, validity, uniqueness & 
wall time

Docking DRD2 Docking score, validity, uniqueness & wall 
time

Dual activity (MPO) DRD2 & DRD3 Average predicted activity, validity, 
uniqueness & wall time

Selectivity (MPO) DRD2 > DRD3 Average predicted activity, validity, 
uniqueness & wall time
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QSAR model training
Active and inactive molecules against DRD2 and against 
DRD3 were extracted from ExCAPE-DB [90]. This corre-
sponded to 4609 and 2758 active molecules and 343,026 
and 402,524 inactive molecules respectively. A further 
unique subset was defined for each target by exclud-
ing molecules with measured activity against the other 
target to ensure no domain overlap between DRD2 and 
DRD3 models for the dual and selective tasks, resulting 
in in 2282 and 373 active molecules and 5161 and 64,717 
inactive molecules for DRD2 and DRD3 respectively. 
To tackle data imbalance, a maximally diverse selec-
tion of 5000 inactive molecules were selected for DRD2 
and DRD3, respectively, via a MaxMin algorithm [91] 
on ECFP4 fingerprints with 2048 bits, implemented in 
RDKit. Three random forest (RF) classification models 
were trained to predict probability of activity (with 100 
estimators, max depth of 15 and minimum leaf sampled 
of 2), one on all DRD2 data with the diverse inactive sub-
set and two on DRD2 and DRD3 unique data with diverse 
inactive subsets, all implemented in scikit-learn [92]. In 
each case model performance was estimated by strati-
fied, active cluster split (inactive molecules were split 
randomly due to being a maximally diverse selection) 
fivefold cross-validation with GHOST decision threshold 
identification [93] resulting in the performance shown in 
Additional file 1: Figure S2.

Reinforcement learning strategy benchmark tasks
Six further tasks of varying practical difficulty were used 
to benchmark the different RL strategies at three levels of 
objective complexity:

1) # Heavy atoms—This ‘easy’ task aims to maximize 
the number of heavy atoms in a molecule calculated 
by RDKit [79]. This is similar in concept to maximiz-
ing penalized LogP [13] and QED [94] which has 
been shown to be trivial by some generative models 
[13, 15, 95]. Although we stress that this probes the 
RL strategy’s ability to extrapolate beyond the train-
ing dataset (which contains molecules with a limited 

number of heavy atoms), rather than as a measure of 
good performance. However, this task is irrelevant to 
real drug discovery objectives.

2) Risperidone similarity—This ‘easy’ task aims to maxi-
mize the Tanimoto similarity to Risperidone (a DRD2 
inverse agonist and co-crystallized ligand in PDB: 
6CM4) according to ECFP4 fingerprints with a bit 
length of 1,024 (as implemented in RDKit). While 
this tests the ability to move to a precise region of 
chemical space, it is unlikely to be relevant as a real 
drug discovery objective due to lack of novelty. The 
ability of generative models to easily maximize such 
tasks has been shown in benchmark studies [22].

3) DRD2 activity—This ‘medium’ task aims to maximize 
the QSAR predicted probability of activity against 
DRD2 (Eq.  8). This task is representative of a real 
objective during early-stage hit finding, providing 
that known ligand data is available. Maximization of 
these tasks are often achieved by generative models 
[4, 5, 15] but is a more scientifically complex objec-
tive than molecular similarity.

4) DRD2 docking score—This ‘medium’ task aims to 
minimize the Glide-SP docking score (predicted 
binding affinity) against DRD2. This task is represent-
ative of a real objective during early-stage hit finding, 
providing that a crystal structure or homology model 
is available. It was implemented as described above 
with the exception that molecules were instead pre-
pared by enumerating up to 16 stereoisomers using 
RDKit [79] and then conducting protonation using 
Epik (pH 7.4) to only protonate the most abundant 
state per stereoisomer. This task has been success-
fully optimized by generative models in some cases 
[47] but proven difficult in others [35].

5) DRD2-DRD3 dual—This ‘hard’ task aims to maxi-
mize the QSAR predicted probability of activity 
against both DRD2 and DRD3 (Eq.  9). This task is 
representative of real drug discovery projects requir-
ing polypharmacological activity, providing that 
ligand data for both is available. This constitutes a 
multi-objective optimization problem which has 
proven more difficult for generative models with an 
increasing number of constraints [15, 47, 96].

6) DRD2/DRD3 selective—This ‘hard’ task aims to 
maximize the QSAR predicted probability of selec-
tive activity against DRD2 over DRD3 (Eq. 10). This 
is representative of real drug discovery projects that 

(8)DRD2 active = PRF (DRD2)

(9)DRD2− DRD3 dual =
PRF

(

DRD2unique
)

+ PRF (DRD3unique)

2
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must avoid off-target effects for toxicity or efficacy 
reasons, providing that ligand data for both is avail-
able. Similar to dual inhibition, multi-objective opti-
mization problems are more difficult for generative 
models to optimize against [15, 96].

Results and discussion
Optimization of DRD2 docking score by Augmented 
Hill‑Climb compared to REINVENT
Optimization ability and sample-efficiency was assessed 
using the procedure described in Methods (Experiment 
1, Fig. 1). Specifically a RNN was trained on the  MOSESn 
dataset [23, 52], an agent was initialized which then 
underwent RL updates to optimize the docking score of 
de novo molecules against DRD2. The REINVENT strat-
egy and docking protocol was identical to our previous 
work [52].

To increase optimization power, the easiest proposal 
is to increase the score contribution to the augmented 
likelihood used by REINVENT by increasing the scalar 
value σ. The original work [4] had a default value of 60, 
however, the subsequent update (REINVENT 2.0 [58]) 
increased this value to 120—suggesting that sample-
efficiency was sub-optimal. Therefore, we first varied the 
value of σ between 30 and 240 and updated an agent for 
100 RL steps only (6400 samples), to minimize computa-
tional expense. However, as shown in Fig.  3a, we found 
little improvement in optimization of DRD2 docking 

(10)DRD2/DRD3 selective =
PRF (DRD2unique)+ (1− PRF (DRD3unique)

2

scores using this approach with REINVENT. The maxi-
mum docking score optimization achieved (best mean 
score relative prior mean score) was 128% with σ = 60 
or 127% with σ = 240, concluding that changing σ values 
alone did not significantly improve optimization over 
limited RL updates.

AHC was then implemented in an effort to improve 
sample-efficiency, while also varying σ and for the same 
amount of RL updates (Fig. 3a). This consistently led to 
improved optimization ability for every σ value compared 
to REINVENT, with a maximum of 205% optimization 
with σ = 240. In total, we found a 1.39-fold improvement 
in optimization ability compared to REINVENT averaged 
across all values of σ. Moreover, AHC required approxi-
mately 80 fewer steps to achieve the mean docking score 
achieved by REINVENT over 100 steps, evidencing a 
large improvement in sample-efficiency. However, learn-
ing was stifled by a drop in uniqueness observed (Fig. 3b) 
i.e., AHC was more prone to mode collapse.

To address the mode collapse, a diversity filter (DF1) 
[75] was applied to both strategies to penalize exploita-
tion and hence encourage exploration. DF1 penalizes the 
score of any of the top 20% of de novo molecules that 
were similar to previously generated molecules, a thresh-
old chosen based on the nature of docking-based virtual 
screening where only the very top ranked molecules are 
considered. This stabilized learning and rescued the drop 
in uniqueness in most cases (Fig.  3c and d). With DF1, 

Fig. 3 Comparison between REINVENT and Augmented Hill-Climb learning strategies to optimize DRD2 docking scores at varying levels of σ. 
(a) Augmented Hill-Climb is more efficient at optimizing docking score at all levels of σ but (b) undergoes increased mode collapse via a drop 
in uniqueness. (c) Docking score optimization can be stabilized and (d) mode collapse rescued by applying a diversity filter. (e–g) Augmented 
Hill-Climb in combination with DF1 is more sensitive to changes in σ, this affects the extent to which de novo molecules occupy property space 
which is not present in the prior training set (grey shaded area) i.e., extrapolation
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AHC evidenced a σ-averaged 1.45-fold improvement 
compared to REINVENT (with a maximum optimization 
of 192% at σ = 180 for AHC, compared to 119% at σ = 180 
for REINVENT). Similar to without the DF1, AHC still 
required 80–90 fewer RL steps to achieve a mean dock-
ing score achieved by REINVENT over 100 steps.

Although increasing the σ value increases the score 
contribution to the loss, it also decreases the prior contri-
bution and thus decreases regularization during optimi-
zation. As such, we expect that larger values of σ result in 
further extrapolation outside the domain of the training 
set and prior, which is the aspect of the generated mol-
ecules we analysed next. Figure  3e–g show the proper-
ties of de novo molecules generated during optimization 
and the property space not occupied by molecules in the 
 MOSESn dataset—serving as a proxy to assess extrapola-
tion. AHC in combination with DF1 is more sensitive to 
changes in σ, where larger values of σ do result in extrap-
olation into property space that is absent in  MOSESn, 
more so than REINVENT in combination with DF1. In 
practice, this extrapolation can be both favourable (by 
identifying novel chemical space) or unfavourable (by 
enabling exploitation of scoring function flaws, such as 
molecules with more heavy atoms providing better dock-
ing scores simply due to the additive nature of docking 
scoring functions [97]). In either case, it is advantageous 
to have greater control over this trade-off, which is 
achieved as variations in σ show more impact for AHC 
over REINVENT. Importantly, AHC still improves 1.47-
fold over REINVENT at σ = 60, where both strategies are 
sufficiently regularized and maintain the property space 
as defined by  MOSESn.

Despite improvement in the optimization ability by 
AHC, it is irrelevant if the resulting de novo structures 
are invalid or implausible (e.g., incorrect valences, unsta-
ble or idiosyncratic functional groups or strained ring 
systems). The chemistry generated by RNNs has been 
evaluated previously [3, 23, 33, 98, 99] and has usually 
been considered reasonable with respect to overall topol-
ogy, fragments, substructures and property space. On the 
other hand, a comparison of chemistry between AHC 
and REINVENT is complicated by the scoring function 
and its suitability for an objective e.g., greater optimiza-
tion may actually lead to unreasonable chemistry due to 
scoring function exploitation rather than as a function 
of the RL strategy. We note that this analysis of scoring 
function suitability is out of the scope of this work but we 
aim to cover this in future work. On the other hand, the 
REINVENT strategy has been shown to maintain similar 
chemistry to the prior RNN [4, 52, 53, 75]. Therefore, we 
visually compared some of the top molecules generated 
at different values of σ, shown in Additional file  1: Fig-
ure S3. At lower values of σ (30–120) and with no regard 

for prior knowledge of DRD2 ligand topology, the mole-
cules are mostly indistinguishable as to which RL strategy 
was used. With regard for DRD2, both strategies learn 
to generate benzyl/bicyclic moieties with a protonatable 
amine above. This chemotype is consistent with the co-
crystallised inverse agonist risperidone [80] and required 
interactions to  D1143x32 for ligand activity [99–102], 
where the cyclic moiety would sit deep in the hydropho-
bic sub-pocket and the amine would form a salt bridge 
with  D1143x32. The only difference between the RL strate-
gies appears to be the better docking scores achieved by 
AHC. However, as σ increases (180–240), de novo mol-
ecules are clearly much larger and therefore exploiting 
the additive nature of the docking scoring function [97]. 
This corroborates the observation of extrapolation into 
restricted property space seen in Fig.  3e and g, which 
enables this exploitation. In this scenario added con-
straints would be necessary in a multi-parameter optimi-
zation setting, such as also defining a suitable molecular 
weight range as this  constraint is no longer imposed by 
the prior dataset. We believe these results highlight the 
balance that is required in the trade-off between regu-
larization and optimization, which is better achieved by 
AHC than REINVENT.

Optimization of docking scores for multiple GPCR targets
Previously, we used REINVENT to optimize the dock-
ing score against other GPCR targets (DRD2, OPRM1, 
AGTR1 and OX1R) over the course of 3000 RL updates, 
the first 500 updates of which are shown in Fig. 4. DRD2 
[80] (same data as previously published [52]) contains a 
deep hydrophobic sub-pocket and requires a salt bridge 
interaction with  D1143x32 for ligand activity. OPRM1 [81] 
similarly forms a salt bridge interaction via  D1473x32 (a 
structurally conserved position in aminergic receptors 
[100, 101]) but with a more open pocket than DRD2. 
AGTR1 [82] requires important salt bridge and hydrogen 
bond interactions to  R1674x65 (e.g., via acidic tetrazole of 
co-crystallised ligand ZD7155) as well as hydrogen bonds 
to  Y351x39 on the opposite side of the pocket. Meanwhile 
OX1R [83] contains four well defined hydrophobic sub-
pockets and sometimes a hydrogen bond to  N3186x55 and 
water mediated hydrogen bond to  H3447x38, ligands are 
found to adopt a horseshoe conformation via π-stacking 
to satisfy these sub-pockets as in the co-crystallised 
ligand suvorexant. The first two targets’ respective dock-
ing scores were able to be minimized similarly (Fig.  4a 
and b), while the latter two targets’ respective docking 
scores were more challenging and showed little mini-
mization (Fig.  4c and d) (especially with respect to the 
distribution of docking scores for known actives). This 
suggests that the docking score optimization ability of 
REINVENT was system dependent or that the  MOSESn 
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dataset used for RNN pretraining did not contain chem-
istry amenable to minimizing the docking score for these 
systems.

Given the improved optimization power of AHC in 
combination with DF1 seen with fewer RL updates 
against DRD2, AHC in combination with DF1 was com-
pared to these REINVENT results to see if improvement 
was consistent over 500 RL updates and for different 
GPCR targets (Experiment 2, Fig.  1). For every target, 
AHC in combination with DF1 (Fig. 4) resulted in faster 
and further minimization of the docking score. For refer-
ence, the 80% retrospective precision threshold was sur-
passed within 100 RL updates in all cases except for the 
particularly challenging OX1R. However, docking score 
plateaus for AHC in combination with DF1 in later stages 
of training. This plateau signals mode collapse as unique-
ness drops, similar to training without a DF as shown in 
Fig.  3a. Interestingly, a convergence of the normalized 
docking score towards the minimum score threshold 

of the DF occurs, and uniqueness then drops for all tar-
gets (Fig. 5a). It appears that the model learns to gener-
ate molecules with a score just below the minimum score 
threshold to avoid DF penalization and is thus vulnerable 
to mode collapse as observed without the DF (Fig. 4a, b).

Therefore, we conducted a search of DFs and hyperpa-
rameters to identify a more optimal configuration that 
would successfully and robustly rescue mode collapse 
(Experiment 3 in Fig.  1) (see next subsection). This led 
to the design of DF2 which differed from DF1 by hav-
ing a lower minimum score threshold of 0.5 instead of 
0.8, linear penalization output mode instead of binary, 
and larger bin size of 50 instead of 25. Using DF2 we re-
ran the previous experiment (Experiment 2 in Fig. 1) on 
the four targets as before, shown in Fig.  4. The change 
in DF stabilized learning over the full length of training 
while still resulting in similar optimization of docking 
score. Moreover, there was no convergence of normal-
ized docking score to the minimum score threshold and 

Fig. 4 Improved learning efficiency of Augmented Hill-Climb against four targets: (a) DRD2, (b) OPRM1, (c) AGTR1 and (d) OX1R. (top left panel) 
Distribution of known active and inactive molecule docking scores. (top right panel) Optimization of de novo molecule docking score via 
reinforcement learning. (bottom right panel) The top 500 REINVENT generated scaffolds with the corresponding time of generation by REINVENT 
or by Augmented Hill-Climb (in combination with DF2) if co-generated. Blue lines represent scaffolds generated by REINVENT first and green lines 
generated by Augmented Hill-Climb (in combination with DF2) first. Scaffolds with a difference in generation time of < 100 RL updates are more 
transparent. Augmented Hill-Climb in combination with DF2 shows improved learning efficiency compared to REINVENT and optimizes past a 
docking score threshold corresponding to a retrospective classification precision of 80% (black dashed line) in all cases
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thus uniqueness stayed relatively high (Fig.  5b). To gain 
a quantitative understanding of improvement in sam-
ple-efficiency, Table  2 compares the number of steps 
(and samples) required by AHC in combination with 

DF2 and REINVENT to reach various thresholds during 
optimization. This shows that the largest improvement 
over REINVENT is made early, where AHC in combi-
nation with DF2 requires 19.8-fold fewer training steps 

Fig. 5 Optimization of normalized docking score and uniqueness during optimization across three targets. (a) With diversity filter 1 (DF1), docking 
score converges to the minimum score threshold (0.8) of the DF and model undergoes mode collapse seen by an associated drop in uniqueness. 
(b) With diversity filter 2 (DF2), no convergence is observed, and uniqueness maintains relatively high. This is due to a lower minimum score 
threshold (0.5) and softer penalization scheme

Table 2 Number of steps taken before the mean exceeds certain internal and external thresholds (earliest sample exceeding 
threshold is shown in brackets)

The final row lists the Augmented Hill-Climb in combination with DF2 fold improvement over REINVENT. Where a threshold was not reached within the maximum 
number of training steps (or samples) it has been annotated as being greater than 500 (or 32,000)

Threshold Number of steps required for optimization 
beyond prior at a given threshold

Number of steps required for optimization 
beyond external thresholds

120% 140% 160% 180% 200% Inactive mean Active mean 80% 
precision 
threshold

DRD2 REINVENT > 500
(15)

> 500
(685)

> 500
(22,292)

> 500
(> 32,000)

> 500
(> 32,000)

1
(1)

163
(15)

 > 500
(15)

Augmented Hill-Climb + DF2 19
(2)

6
(49)

105
(1248)

> 500
(3009)

> 500
(23,150)

2
(2)

19
(2)

48
(2)

OPRM1 REINVENT 133
(7)

> 500
(868)

> 500
(7663)

> 500
(> 32,000)

> 500
(> 32,000)

4
(2)

80
(4)

> 500
(7)

Augmented Hill-Climb + DF2 3
(16)

17
(22)

45
(29)

150
(34)

> 500
(2759)

6
(16)

17
(22)

33
(28)

AGTR1 REINVENT > 500
(25)

> 500
(510)

> 500
(5,596)

> 500
(> 32,000)

> 500
(> 32,000)

1
(2)

> 500
(8)

419
(6)

Augmented Hill-Climb + DF2 62
(27)

318
(869)

396
(3,404)

> 500
(5,207)

> 500
(27,979)

2
(1)

62
(27)

46
(2)

OX1R REINVENT 5
(1)

52
(1)

> 500
(7)

> 500
(142)

> 500
(490)

1
(2)

9
(1)

> 500
(490)

Augmented Hill-Climb + DF2 9
(1)

15
(2)

31
(2)

87
(31)

382
(557)

2
(1)

14
(2)

494
(557)

Average fold improvement 19.8
(2.5)

11.2
(38.7)

8.3
(71.8)

2.8
(240.6)

1.1
(3.8)

0.5
(1.0)

5.5
(2.1)

9.7
(3.2)
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until the mean surpasses 120% optimization, however, 
both strategies sample a single molecule with a dock-
ing score exceeding this threshold within the first batch. 
Meanwhile, AHC in combination with DF2 took 71.8-
fold fewer samples than REINVENT until a molecule 
surpassed 160% optimization. At 180% and 200% opti-
mization, REINVENT only sampled molecules surpass-
ing the threshold for OX1R and thus fold-improvement 
could not be calculated, however a minimum estimate is 
shown based on the maximum number of training steps 
or samples generated. On average, AHC in combination 
with DF2 required 7.4-fold fewer training steps and 45.5-
fold fewer samples across all targets and all optimization 
thresholds.

To investigate if similar chemistry was generated by the 
RL strategies, we identified the top 500 scaffolds gener-
ated by REINVENT for each target and plotted at what 
stage they were first generated by either RL strategy, 

shown in Fig. 4 (bottom part of each panel of the figure). 
This shows a general trend where AHC in combination 
with DF2 tends to generate scaffolds appearing in REIN-
VENT at a later stage much sooner, and scaffolds appear-
ing  earlier in REINVENT much later. That is, AHC in 
combination with DF2 identifies chemistry where the 
mean docking score has improved more than 100 steps 
sooner, while early chemistry typically achieved due to 
batch variance more than 100 steps later—likely because 
of the DF encouraging exploration and re-visiting sub-
optimal chemistry.

A visual comparison of the centroids of the top 100 
compounds for each target for AHC in combination with 
DF2 and REINVENT is shown in Fig. 6. With disregard 
to prior knowledge of target ligands and suitability of 
the scoring function, the quality of chemistry generated 
is again indistinguishable between the two RL strate-
gies. However, regarding co-crystal ligands and known 

Top 1 Top 2 Top 3 Top 4 Top 5

REINVENT

REINVENT

REINVENT

Augmented Hill-Climb + DF2

REINVENT

Augmented Hill-Climb + DF2

Augmented Hill-Climb + DF2

Augmented Hill-Climb + DF2

RL strategyTarget

DRD2

OPRM1

AGTR1

OX1R

Fig. 6 Centroid of the 5 largest clusters for the top 100 molecules according to docking score against DRD2, OPRM1, AGTR1 and OX1R receptors. 
Cluster size (CS), centroid docking score (DS) and the average cluster docking score (AvDS) is annotated below. In each case Augmented Hill-Climb 
generates clusters with lower (better) docking scores, while maintaining reasonable chemotypes that are indistinguishable to those generated by 
REINVENT. Note that protonation states, tautomers and stereoisomers are enumerated by the docking protocol (see Methods)
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important residue interactions, the scoring function is 
not always suitable as shown in the case of AGTR1. Here 
we can see no acid moieties are generated for AGTR1 by 
either strategy (Fig.  6) which will be in part due to the 
docking algorithm targeting only the  Y351x39 sub-pocket 
and out towards the extracellular surface (Additional 
file  1: Figure S7c) as opposed to the sub-pocket sur-
rounding  R1674x65 as required for ligand activity [82].

In addition, we investigated property space occupied by 
AHC generated de novo molecules (Fig. 7) which shows 
that the property space is still maintained (mean remains 
within training set space) in all cases except for increas-
ing molecular weight seen with OX1R. Here, the mean 
is slightly above 350  Da which is however consistent 
with OX1R antagonists [83]. In fact, in some cases (for 
OPRM1 in the case of molecular weight and number of 
rotatable bonds, and for OX1R in the case of the num-
ber of rotatable bonds) the property space shifts in the 
opposite direction to that which would be expected by 
an exploitation of the scoring function. Overall, de novo 
chemistry is still reasonable and sufficiently regularized 
by AHC in combination with DF2 and can even be more 

heavily regularized by reducing σ to 30, yet still outper-
form REINVENT at all σ values as seen in Experiment 1.

Effect of Augmented Hill‑Climb diversity filter 
hyperparameters on molecule generation
Given the drop in uniqueness observed in Fig.  5a, we 
conducted a hyperparameter search to identify optimal 
diversity filters and respective hyperparameters that 
best combat mode collapse (Experiment 3 in Fig. 1). We 
tested DF configurations on three representative objec-
tives taken from the GuacaMol benchmark suite [22] and 
hence used an RNN architecture, and training regime 
identical to that implemented in GuacaMol [67] (see 
Methods), with the exception of using AHC for optimi-
zation. This resulted in 825 individual runs across the 
three objective tasks that were assessed by computing the 
area under the curve during optimization for uniqueness, 
score/goal achieved as well as, taking the final run time.

In all cases (Additional file 1: Figures S4-6), we found 
that a higher minimum score threshold (> 0.5) lead to 
poorer performance. The higher the minimum score 
threshold, the fewer molecules the DF is applied to and 

Fig. 7 REINVENT compared to Augmented Hill-Climb (in combination with DF2) property space according to molecular weight, LogP and the 
number of rotatable bonds for molecules optimized to minimize the docking score against four targets. The grey shading indicates property space 
not represented in the prior training set
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therefore the closer AHC is to being run without a DF, 
explaining the drop in uniqueness as observed previously 
(Figs. 3a, b,  5a). We note that the specific implementa-
tion of scoring functions we use has a duplicate lookup 
function that may result in longer run times if many 
duplicate molecules are observed, explaining the coun-
ter-intuitive increase in run time with less actual DF use 
(higher minimum score threshold).

With respect to improving uniqueness—the main 
symptom of mode collapse—lower bin sizes, linear 
output mode and compoundsimilarity / scaffoldsimi-
larityatompair DFs appear to work best. Lower bin 
size corresponds to quicker penalization for certain 
chemotypes, although bin size effect is lesser for the 
Osimertinib MPO task. In the case of Osimertinib 
MPO (Additional file  1: Figure S6a), simply penaliz-
ing non-unique molecules provides reasonable perfor-
mance improvement from 0.19 AUC (no DF) to 0.87 
AUC. Meanwhile linear output performs best when bin 
size is greater than 0 (note when bin size is 0 all output 
modes are effectively binary), suggesting that greater 
performance is achieved with a more gradual penaliza-
tion gradient. Lastly, compoundsimilarity and scaffold-
similarityatompair DFs slightly outperform all others. 
We suspect these DFs are a broader measure of simi-
larity than identical scaffolds or scaffoldsimilarityecfp 
resulting in more molecules being identified as similar 
and therefore penalized. Note that we do not investi-
gate the minimum similarity threshold or fingerprint 
hyperparameters in this work and leave them as default 

[75]. Therefore, preventing mode collapse and improv-
ing uniqueness typically requires stricter diversity filter 
parameters that penalize duplicated or similar mol-
ecules more easily (although a softer gradient of penali-
zation is preferred).

With respect to the objective score, there was less dis-
crepancy between output modes and the bin size and DF 
observations effectively reversed. Higher bin sizes and 
the narrower measures of similarity (identicalmurcko-
scaffold and scaffoldsimilarityecfp) showed higher AUCs 
indicating better performance. We believe these more 
lenient diversity filter hyperparameters enable AHC 
more time to associate chemotypes with high rewards 
resulting in increased objective scores.

Overall, a trade-off is required in choosing DFs and 
hyperparameters for use in combination with AHC. DF 
penalization must be strict enough to reliably prevent 
mode collapse as observed by a drop in uniqueness, 
yet lenient enough to enable AHC to learn chemotype-
reward associations. These observations led us to the 
design of DF2 which is a compromise between prevent-
ing mode collapse and achieving high objective scores.

Benchmarking Augmented Hill‑Climb against other 
reinforcement learning strategies
The performance of Augmented Hill-Climb was com-
pared to other RL strategies commonly used for lan-
guage-based RNN de novo molecule generation, 
namely, REINFORCE [5], REINVENT [4, 58], BAR [20] 
and Hill-Climb [22], as well as in combination with KL 

Fig. 8 Per-molecule optimization of different RL strategies against different objective tasks of varying difficulty: (a) number of heavy atoms, (b) 
Similarity to Risperidone (DRD2 inverse agonist), (c) predicted probability of DRD2 activity, (d) Glide-SP docking score against DRD2, (e) predicted 
probability of dual activity against DRD2 and (f) predicted probability of selective activity towards DRD2 over DRD3. Standard deviation can be 
seen in Additional file 1: Figure S8. In all cases, except the number of heavy atoms, AHC outperforms all other RL strategies with respect to objective 
optimization while maintaining validity and uniqueness. Only valid molecules are plotted, therefore gaps seen with HC* denote regions where no 
valid molecules were generated



Page 17 of 22Thomas et al. Journal of Cheminformatics           (2022) 14:68  

regularization for non-regularized strategies (Experiment 
4, Fig. 1). In the interest of standardisation, the prior was 
trained on the GuacaMol train dataset. The RL strategies 
were applied to six tasks of varying practical difficulty 
(see “Methods”). DF2 was used in all cases except for the 
Risperidone similarity task which uses a lower minimum 
score threshold of 0 (Additional file 1: Table S4, DF3) due 
to low reward values observed.

The performance of task optimization is shown in 
Fig.  8. AHC is the most efficient of all RL strategies at 
all tasks except for maximizing the number of heavy 
atoms (Fig. 8a). It is particularly better than the other RL 
strategies during early-stage optimization (e.g., Fig.  8b) 
and in more difficult objectives (e.g., Fig.  8e, f ). AHC 
even outperforms un-regularized RL strategies. Intrigu-
ingly, AHC seems to achieve maximization towards the 
end of training in the heavy atom task (seen to a lesser 
extent with REINVENT 2.0), suggesting it will eventu-
ally be able to extrapolate outside the training domain. 
As AHC uses a considerably smaller batch size than HC 
and therefore undergoes more frequent network updates, 
we applied the same batch size to HC to investigate this 
effect, denoted as HC*. This smaller batch size did in-fact 
improve sample-efficiency, similar to AHC, in early stages 
of training, but then quickly underwent mode collapse as 
evidenced by a drop in validity and uniqueness (Addi-
tional file  1: Figures  S10 and S11). Moreover, KL regu-
larization did not rescue mode collapse in any case, and 
sometimes worsened performance, suggesting it is not 
a sufficient regularization method in this context. Inter-
estingly, our re-implementation of BAR performed par-
ticularly poorly in most cases except for DRD2 activity 
(the case study in the original implementation [103]). We 
propose that the best agent memory in this context may 

actually inhibit learning without notable improvements 
in-between updating the ‘best agent’; in effect having two 
‘regularizers’ inhibiting learning. As a result, decreasing 
the ‘best agent’ update frequency (from 5 as originally 
implemented) may improve performance. Overall, AHC 
shows a sample-efficiency well beyond other RL strate-
gies for all tasks of practical importance (i.e., excluding 
the heavy atom task).

The efficiency benefit of AHC is true also by wall time 
(Additional file 1: Figure S9). To put this practical benefit 
into greater context, Table 3 shows the CPU hours (i.e., if 
only 1 CPU was used) required to reach different optimi-
zation thresholds for the DRD2 docking score task. AHC 
is the only strategy able to optimize the mean docking 
score to 200% that of the initial prior mean docking score 
within the given time. Moreover, AHC also achieves 
lower optimization thresholds much quicker, for exam-
ple, 140% in just 16 h compared to 202 h for REINVENT 
2.0. This optimization task was parallelized over 10 CPUs 
and therefore actually corresponded to 1.6 h and 20.2 h 
respectively. Given access to just 10 CPUs, AHC is able 
to achieve 200% optimization from the prior in less than 
a day (21.6 h). This enables optimization tasks to be run 
on single, local machines (e.g., 6–12 CPUs) on a far more 
reasonable time scale than previously possible, without 
the need for cloud computing. This provides opportuni-
ties for more than one expensive scoring function (e.g., 
docking into two receptors, or docking and computer-
aided synthesis planning) to be used to evaluate molecule 
fitness on a more reasonable time scale.

Additional file 1: Figures S12-17 show the centroids of 
the largest clusters for the top 100 molecules generated 
during the six benchmark optimization tasks. Firstly, 
all strategies are more prone to generating unrealistic 

Table 3 CPU hours required for RL strategies to optimize the DRD2 docking score benchmark task to different thresholds

Time is representative of when the batch mean exceeds the respective internal / external threshold (time of the earliest sample exceeding threshold is shown in 
brackets). Run using an AMD Threadripper 1920 × CPU and Nvidia GeForce RTX 2060 super GPU. Failing to reach a threshold is marked by a “–”

CPU hours required for optimization beyond prior at a 
given threshold

CPU hours required for optimization beyond 
external thresholds

Threshold 120% 140% 160% 180% 200% Inactive mean Active mean 80% precision

REINFORCE 74 (0) 173 (0) – (20) – (34) – (96) 2 (0) 103 (0) 177 (0)

REINFORCE + KL regularization 183 (0) – (0) – (33) – (74) – (216) 22 (0) 204 (0) – (0)

REINVENT 79 (0) – (0) – (8) – (164) – (–) 4 (0) 93 (0) – (0)

REINVENT 2.0 38 (0) 202 (0) – (16) – (53) – (92) 12 (0) 51 (0) 198 (0)

BAR – (0) – (0) – (32) – (32) – (–) 4 (0) 0 (0) – (0)

Hill-Climb 44 (0) 114 (0) 177 (0) 218 (24) – (85) 16 (0) 57 (0) 99 (0)

Hill-Climb + KL regularization 45 (0) 106 (0) 157 (0) – (45) – (45) 8 (0) 58 (0) 99 (0)

Hill-Climb* 11 (0) 31 (1) 52 (6) – (15) – (31) 2 (0) 11 (0) 24 (0)

Hill-Climb* + KL regularization 14 (0) 28 (0) 74 (1) – (17) – (17) 6 (0) 17 (0) 31 (0)

Augmented Hill-Climb 9 (0) 16 (0) 72 (0) 151 (14) 216 (15) 2 (0) 13 (0) 27 (0)
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chemistry due to the broader training domain of the 
GuacaMol [22] training set e.g., increasing molecular 
weight seen in the DRD2 docking score optimization task 
(Additional file 1: Figure S15). This is even observed for 
the more heavily regularized REINVENT strategy but is 
not present when using the  MOSESn training set (Fig. 6). 
Moreover, KL regularization as proposed previously [41, 
74] does not seem to improve chemistry generated by 
REINFORCE and HC and instead shows a tendency to 
increase molecular weight (Additional file 1: Figure S14). 
On the other hand, AHC results in chemistry similar to 
REINVENT and is typically more reasonable than REIN-
VENT 2.0 (e.g., longer linker chains in Additional file 1: 
Figure S16), is less prone to idiosyncratic tendencies of 
HC (e.g., large molecules and long chains in Additional 
file 1: Figure S16), yet more sample-efficient than either. 
Overall, we believe AHC strikes the right balance in the 
trade-off between extrapolation and sample-efficiency 
due to effective, tunable regularization that can maintain 
training set properties and therefore the generation of 
sensible and realistic molecules de novo.

Applying Augmented Hill‑Climb to transformer 
architectures
RL algorithms (including AHC) should be model-agnos-
tic and therefore applicable to other models used in a 
policy-based reinforcement learning setting. To test this 
and confirm whether AHC is still superior to REINVENT 
in this setting, we applied these two RL approaches to a 
transformer model (Tr) that uses state-of-the-art atten-
tion mechanisms [68] (Experiment 5, Fig. 1). Rather than 
typical seq-to-seq prediction, the encoder was trained in 

an autoregressive manner to predict the next token in a 
SMILES sequence by attending over all previous tokens. 
RL was then conducted using the same approach as with 
the RNN on the same DRD2-based benchmark applied 
previously, for both REINVENT and AHC in combina-
tion with DF3 (a more stringent diversity filter that penal-
izes all molecules independent of score). Figure 9 shows 
that AHC still outperforms REINVENT with regards to 
sample-efficiency and optimization power. However, as 
shown in Fig. 9a–c, and e the Tr model is much less stable 
under RL optimization compared to the RNN and more 
readily undergoes mode collapse i.e., it starts generating 
invalid or repeated (non-unique) molecules, as shown in 
Additional file 1: Figures S18-19. In fact, very few imple-
mentations of transformers exist within a RL setting (e.g., 
[104, 105]) likely due to this instability during training 
and computational expense, sometimes being distilled 
to an RNN for RL [10]. Therefore we additionally imple-
mented a modified transformer architecture designed to 
stabilize model optimization during RL [69]. This gated 
transformer (GTr) architecture implements a GRU-like 
gate in-place of the residual connection and relocates 
layer normalization to input streams (notably this is not 
the only recent example of combining concepts from 
GRUs or LSTMs with transformer architectures [106]). 
As shown in Fig.  9, this appeared to stabilize RL and 
again showed that AHC outperforms REINVENT, leav-
ing only the heavy atom task still failing with AHC which 
is notably outside the applicability domain of the train-
ing dataset (and also devoid of any practical relevance). 
Examples of de novo chemistry generated by these 
models can be seen in Additional file 1: Figures S20-25. 

Fig. 9 Per-molecule optimization by REINVENT and Augmented Hill-Climb RL strategies for the transformer (Tr) and gated transformer (GTr) 
architecture against the DRD2 benchmark objectives. Tr is more unstable during RL by REINVENT which is stabilized by the GTr. In all cases 
Augmented Hill-Climb outperforms REINVENT at objective optimization. Although these transformer models are more prone to mode collapse than 
an RNN as observed by a drop in validity and uniqueness as shown in Additional file 1: Figures S18-19



Page 19 of 22Thomas et al. Journal of Cheminformatics           (2022) 14:68  

Overall, this shows that RL efficiency gains by AHC also 
generalize to other language models.

Perspective
Many more complex architectures to conduct de novo 
molecular design have been published since seminal 
works [3, 4, 12] however there has been little convinc-
ing evidence of any significant improvement over RNNs 
since that time. In fact, REINVENT recently displayed 
state-of-the-art performance on molecular optimiza-
tion within a given number of samples [107]. Therefore, 
we believe that AHC currently evidences state-of-the-art 
goal-directed de novo molecule generation due to supe-
rior performance over REINVENT. That said we also 
underline that progress still needs to be made in how 
we evaluate and compare state-of-the-art, not only with 
regards to scoring function optimization but also the 
chemistry generated.

We acknowledge that alternative methods can be used 
to improve the sample-efficiency of RL [108]. For exam-
ple, experience replay can be used to remind the agent of 
‘good’ molecules [58, 108], a margin guard [109] can be 
employed to dynamically change α during RL updates or 
curriculum learning can be used to accelerate learning by 
breaking the objective into a sequence of simpler tasks 
[110]. We are of the opinion that AHC is a more direct 
and principled approach to improve sample-efficiency 
and could even be used in combination with these meth-
ods to potentially further improve reinforcement learn-
ing for de novo molecule optimization.

Conclusion
In this work, we have proposed a modification to the 
REINVENT [4, 58] RL framework for language-based de 
novo molecule generation that exhibits improved sam-
ple-efficiency. This method, referred to as Augmented 
Hill-Climb, improves optimization ability ~ 1.5-fold over 
REINVENT for the task of optimizing DRD2 Glide-SP 
[89] docking score. While more susceptible to mode 
collapse, this can be successfully ameliorated by appli-
cation of an appropriate diversity filter. This new strat-
egy can optimize the docking score for other systems 
beyond DRD2 including OPRM1, AGTR1 and OX1R 
where it improved sample-efficiency ~ 45-fold on aver-
age. When compared to other common RL strategies 
used in language-based RNN de novo molecule gen-
eration [5, 22, 41], it was found to outperform REIN-
FORCE, REINVENT, BAR and Hill-Climb with respect 
to optimization ability, sample-efficiency, regularization 
and resulted in chemically reasonable molecules. We 
believe this is achieved by circumventing unwarranted 
regularization in REINVENT, but it can also be viewed 

as applying essential regularization to Hill-Climb. Fur-
thermore, we show that this algorithm can be success-
fully applied to transformer architectures showing that 
it generalizes across language models. The improvement 
in sample-efficiency enabled by Augmented Hill-Climb 
will be especially useful when using computationally 
expensive scoring functions such as molecular docking 
or computer-aided synthesis planning tools. We believe 
these results highlight there is still scope for improve-
ment in early generation ML-based generative models 
and that designing more complex generative models is 
not the only path to advance the field of molecular de 
novo design.
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