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Abstract 

While in the last years there has been a dramatic increase in the number of available bioassay datasets, many of them 
suffer from extremely imbalanced distribution between active and inactive compounds. Thus, there is an urgent need 
for novel approaches to tackle class imbalance in drug discovery. Inspired by recent advances in computer vision, 
we investigated a panel of alternative loss functions for imbalanced classification in the context of Gradient Boost-
ing and benchmarked them on six datasets from public and proprietary sources, for a total of 42 tasks and 2 million 
compounds. Our findings show that with these modifications, we achieve statistically significant improvements over 
the conventional cross-entropy loss function on five out of six datasets. Furthermore, by employing these bespoke 
loss functions we are able to push Gradient Boosting to match or outperform a wide variety of previously reported 
classifiers and neural networks. We also investigate the impact of changing the loss function on training time and find 
that it increases convergence speed up to 8 times faster. As such, these results show that tuning the loss function for 
Gradient Boosting is a straightforward and computationally efficient method to achieve state-of-the-art performance 
on imbalanced bioassay datasets without compromising on interpretability and scalability.
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Introduction
In the last decade, machine learning (ML) and deep 
learning (DL) have radically transformed the conven-
tional workflow for virtual screening in drug discovery 
[1]. This paradigm shift is strongly related to the sub-
stantial increase in freely available chemical data [2]. 
For example, popular repositories like PubChem and 
ZINC20 currently contain 1.2 million bioactivity assays 
and 1.4 billion unique compounds respectively [3–5]. 
Thanks to these resources, it is straightforward to obtain 
thousands of training points to develop high-performing 
predictive models, which can then be used to screen for 
novel ligands, antibiotics, antivirals and so forth [6–8].

The amount of data available has made it possible 
to use large neural networks, such as autoencoders 
(AE), transformers and graph neural networks (GNN) 
to learn data-driven molecular features, in contrast to 
prior featurization methods such as fingerprints and 
physicochemical descriptors [9–11]. Although these 
architectures have achieved impressive results on many 
benchmarks, they tend to be outperformed by descrip-
tor-based models on class-imbalanced datasets [12–15], 
where the number of inactive compounds can be several 
orders of magnitude larger than the number of actives. 
Among the descriptor-based classifiers, tree ensembles 
such as Random Forest and, more recently, Gradient 
Boosting generally achieve the best performance [13, 15, 
16]. Furthermore, this class of models provides additional 
benefits such as straightforward interpretability [17, 18], 
fewer hyperparameters to optimize and faster training 
speed compared to neural networks. [19]

The issue of class imbalance is of critical importance in 
drug discovery, given that the vast majority of the data-
sets available in this field are imbalanced [20], as high-
lighted by Landrum et al. [21] As such, there is an urgent 
need for novel strategies to tackle class imbalance for 
modelling bioassay data.

Current methods to address this issue usually rely on 
resampling the original class distribution or by employing 
algorithmic solutions such as custom loss functions [22, 
23]. The latter approach has garnered interest in the field 
of computer vision, where the majority of classes in mul-
titask classification have only a handful of positive sam-
ples [24–27]. Overall, these approaches rely on reframing 
the classification objective by reducing the influence 
of well-classified training instances, forcing the classi-
fier to focus on hard-to-model samples, or by adjusting 
the unscaled output logits according to the prior prob-
ability to observe a given class. Research has shown that 
employing these methods provides a significant improve-
ment over the baseline with virtually no additional com-
putational cost. [24–27]

While there are several studies investigating resam-
pling in the context of bioassay modelling [5, 28–30], 
changing the training objective has not been thoroughly 
investigated thus far. This study directly addresses this 
gap by investigating the effectiveness of a variety of 
recently published imbalance-insensitive loss functions 
for training Gradient Boosting classifiers. In this work, 
we considered Focal loss (FC) [24] Logit-adjusted loss 
(LA) [27] Equalization loss (EQ) [26] and Label-Distri-
bution-Aware Margin (LDAM) [25] loss because of their 
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popularity in computer vision and their diversity from a 
theoretical standpoint.

The choice of pairing Gradient Boosting with the loss 
functions is motivated by its strong baseline performance 
across several studies in imbalanced classification tasks 
[13, 15]. Furthermore, its training speed makes [31, 32] 
it an attractive solution for modelling large-scale bioas-
says and its straightforward explicability allows detec-
tion of spurious correlations arising from false positives 
[33], which are known to be frequent in high-throughput 
screens [34, 35]. Therefore, tuning Gradient Boosting 
with bespoke loss functions can result in cheap, inter-
pretable and high-performing models which is ideally 
suited for modelling imbalanced bioassay data.

We benchmark our proposed approach on six data-
sets from public (MoleculeNet [15] and MolData [20]) 
and proprietary (Merck KGaA) sources, comprising of 
approximatively 2 million compounds and 42 tasks with 
varying degrees of imbalance. Our findings show that 
changing the loss function provides a consistent, signifi-
cant improvement, over cross entropy loss on five out of 
six datasets and that thanks to this modification, Gradi-
ent Boosting is able to match or outperform a wide vari-
ety of ML and DL approaches, including multitasking 
networks.

Methods
Gradient boosting
Originally developed by Friedman et  al. [36] Gradient 
Boosting is a tree ensemble method that relies on training 
a sequence of weak learners (generally regression trees), 
each fitted on the residuals of the prior model. The final 
model is obtained by simply combining all the predic-
tions from each individual classifier. Since this procedure 
is prone to overfitting, all Gradient Boosting frameworks 
offer a variety of regularization options, such as learning 
rates to modulate the influence of an individual learner 
on the final prediction, sampling of training samples and 
variables, L1 regularization and other options. [31, 32]

A key difference between Gradient Boosting and Ran-
dom Forest is in the way individual trees are optimized. 
A Gradient Boosting classifier uses regression trees, 
where the individual splits are optimized according to 
the gradient and the Hessian of some loss function (i.e. 
cross-entropy), and converts the sum of predictions into 
a probability by applying the sigmoid function [31]. Ran-
dom Forest instead uses decision trees, where the indi-
vidual splits are optimized using criteria such as the Gini 
impurity or the Shannon entropy [37]. This distinction 

allows implementation of custom loss functions in a 
straightforward manner in any Gradient Boosting frame-
work. [38]

There are several python packages available for train-
ing Gradient Boosting models, the most popular being 
XGBoost [31], CatBoost [39] and LightGBM [32]. In this 
study, we developed all models using the Python version 
of LightGBM 3.3.2.

Loss functions
The default loss function for many gradient-based clas-
sifiers, including LightGBM, when dealing with imbal-
aced classification is the weighted cross-entropy (WCE) 
[22, 23], which measures how close the class probabilities 
predicted by the classifier match the true class labels. It is 
defined as follows:

where m is the total number of samples, yn are the target 
labels, ŷn are the predictions, wi is a tunable parameter to 
account for class imbalance. When handling imbalanced 
datasets, classifiers tend to disregard the first term, cor-
responding to mistakes on the minority class, and only 
focus on minimizing the second term, corresponding 
to mistakes on the majority class, leading to a subop-
timal model [22, 23]. This can be tackled by setting wi 
equal to the ratio of inactive compounds versus active 
compounds.

Focal loss
Focal loss modifies the binary cross-entropy formulation 
by reducing the influence of well-classified samples on 
the overall loss [24, 38]. The formulation goes as follows:

where γ is a tunable parameter that affects the shape of 
the loss function. For high values of γ , the contribution 
of well classified samples to the overall loss approaches 0, 
allowing the gradient to focus more on the minority class. 
If γ is set to 0, the focal loss coincides with the standard 
cross-entropy loss.

Logit‑adjusted loss
Instead of modulating sample influence during the train-
ing process like weighted cross-entropy or Focal loss, 
Logit-adjusted loss scales the raw logits from the classi-
fier according to the a priori probabilities of the classes 
[27], as shown in Formula 3

(1)
LCE = −

∑m
n=1 wiynlog(ŷn)+

(
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)
log
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where σ is the sigmoid function, pi is the raw logit predic-
tion, πM and πm are the prior probabilities for the major-
ity and minority classes and τ is a smoothing factor that 
modulates the influence of the logit adjustments on the 
learning process. One key difference of Logit-adjusted 
loss compared to other approaches is that it guarantees 
Fisher consistency for the estimator by design, through a 
Bayes optimal solution for the balanced error. [27]

Label‑distribution‑aware margin loss
Similarly to Logit-adjusted loss, LDAM loss applies an 
offset to the raw logits from the model, but the optimal 
offsets are derived by minimizing a margin-based gener-
alization bound [25]. One key limitation of margin-based 
approaches such as Support Vector Machines is that they 
rely on hinge loss [40], which is problematic to optimize 
for gradient-based methods because of its non-smooth-
ness [25]. To tackle this issue, Cao et  al. opted to use a 
cross-entropy inspired formulation, as shown in Formula 
4:

Where C is an hyperparameter to be tuned and nm and 
nM are the number of samples in the minority and major-
ity class respectively.

Equalization loss
Another way to account for class imbalance is to operate 
at gradient level, for example by up-weighting gradients 
from minority samples and down-weighting the ones 
from majority samples according to the gradient ratio 
between classes. This approach has the theoretical advan-
tage of weighting the minority class not only according 
to the class imbalance, but also according to the intrinsic 
difficulty of the classification problem, which might yield 
better weights compared to simple class counting statis-
tics [26]. Another advantage is that this approach is func-
tion-agnostic, in the sense that it can be implemented to 
adjust any pre-existing loss function, i.e. cross-entropy.

To obtain the weighting coefficients for the gradients 
of the minority and majority classes, Equalization loss 
employs the following formula:

where gr t is the ratio of accumulated gradients between 
the minority and majority classes at iteration t , α is a 
hyperparameter that allows to increase the weight for the 
minority class and f  is a mapping function:

(4)LLDAM = −
∑m

n=1 ynlog
(
σ

(
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4
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log
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4
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(5)wm
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(
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(
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t
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(6)wM
t = f

(
gr

t
)

With hyperparameters γ and µ.
To implement this approach, since Gradient Boosting 

is not trained with mini-batches, we considered the addi-
tion of one individual tree as one iteration, we clipped 
the gradients for numerical stability and we used binary 
cross-entropy as the underlying loss function.

Datasets
To evaluate our proposed approach, we collected six 
datasets from publicly available and proprietary sources. 
From MoleculeNet [15] we selected Tox21, HIV and 
MUV, from MolData [20] we chose Phosphatase and 
NTPase and finally we added one high-troughput 
screening (HTS) dataset from Merck KGaA, resulting in 
approximately 2 million compounds and 42 tasks. This 
selection covers a broad imbalance range and dataset 
size, to ensure that our findings are not biased by specific 
dataset conditions.

To access the publicly available data, we downloaded 
the cleaned MoleculeNet datasets from Jiang et  al. [13] 
and the MolData ones from Arshadi and coworkers. [20]

The datasets are summarized in Table 1, reporting the 
average number of compounds and imbalance ratios 
across tasks. The individual values pertaining each end-
point can be found in Additional file  1: Table  S1. Since 
the HTS benchmark is a proprietary dataset from Merck 
KGaA, the exact number of compounds is confidential.

Metrics
A critical step of developing classifiers for imbalanced 
classification is the choice of metric to measure perfor-
mance [41, 42]. For example, evaluating machine learn-
ing models according to accuracy when dealing with 

(7)f (x) = 1
1+e−γ (x−µ)

Table 1 Summary of the datasets employed in this study

For a given dataset, the number of compounds per task and imbalance ratio are 
reported as averages across all tasks

Name Source Tasks Compounds 
per task

Imbalance ratio

Tox21 MoleculeNet 12 6400 1:16

HIV MoleculeNet 1 40748 1:27

MUV MoleculeNet 17 14000 1:511

Phosphatase MolData 5 330000 1:325

NTPase MolData 6 330000 1:2963

HTS Merck KGaA 1  > 330000 1:140
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imbalanced data can lead to misleading conclusions, 
since it does not properly account for the performance 
on the minority class [5, 41, 42]. To allow for compari-
sons against the results previously reported in the lit-
erature for these benchmarks, we opted to evaluate all 
datasets using all metrics used by Arshadi et al. [20] and 
Jiang and coworkers [13], with the addition of balanced 
accuracy, F1 score and the Matthews correlation coef-
ficient (MCC). Therefore, for each benchmark receiver 
operating characteristic area under curve (ROC-AUC), 
precision-recall area under curve (PR-AUC), accuracy, 
balanced accuracy, recall, precision, F1 score and MCC 
were measured. A more in-depth discussion on the 
choice of metrics and their definition can be found in: 
Sect. 1 of the. Given the number Additional file 1 infor-
mation of classifiers and metrics involved in our study, 
for conciseness we show in the main text only the metrics 
reported by the authors of the respective benchmarks. 
The performance tables with all metrics employed in this 
study can be found in: Sect. 3, 4 and 5 of the Additional 
file 1 information

Benchmarking procedure
After downloading the datasets from the respective 
repositories, all compounds were sanitized using RDKIT 
(version 2022.03.01) as described in the original papers 
and featurized using Extended-Connectivity Fingerprints 
(ECFP) with bit size 1024 and radius 2.

To develop the models, we followed two different 
benchmarking procedures depending on the dataset 
source. This way, the results obtained in this study are 
directly comparable to the performance of other classifi-
ers reported in the respective papers. This enables us to 
put in perspective the improvements our approach pro-
vides over the default LightGBM implementation in a 
more conventional classifier comparison study.

For Tox21, HIV and MUV, we optimized each classi-
fier in cross-validation using random splits, with a ratio 
of 80:10:10 for the training, validation and test set. Each 
model used early stopping on the loss of the validation 
set, while the test set was used to evaluate the perfor-
mance of the model. To optimize the models we used 
Hyperopt (version 0.2.7) [43] for 20 iterations. Once the 
optimization was finished, we ran the model with opti-
mal hyperparameters on 50 random splits, with a ratio of 
80:10:10 for the training, validation and test set. Similar 
to the optimization phase, we used the validation set for 
early stopping and the test set for performance assess-
ment. Regarding the choice of metrics, when comparing 
our approach to results from the literature we followed 
the guidelines from Wu et al. [15]: Tox21 and HIV were 
evaluated according to ROC-AUC, while MUV with 
PR-AUC.

For the Phosphatase and NTPase datasets, we 
employed the scaffold splits provided by Arshadi et  al. 
[20] For each task, we optimized each model on the vali-
dation set and reported the performance on the test set. 
In all instances we used early stopping on the validation 
set to determine the optimal number of trees. All classi-
fiers were optimized using Hyperopt [43] for 20 iterations 
and then evaluated 5 times using different random seeds. 
For comparisons with other machine learning algo-
rithms, we reported the metrics employed by Arshadi 
et  al. (accuracy, ROC-AUC, precision, recall) with the 
addition of the F1 score, to estimate the tradeoff between 
high precision and high recall.

For the Merck KGaA HTS dataset we employed the 
evaluation procedure for the MolData benchmarks. We 
created training, validation and testing sets using scaffold 
splitting with an 80:10:10 ratio. Then, we optimized all 
classifiers with Hyperopt for 20 iterations on the valida-
tion set using early stopping. Finally, we retrained each 
model with optimal parameters 5 times and measured all 
metrics on the test set.

To assess the efficacy of the custom loss functions, we 
use as baseline in all our benchmarks the performance 
of weighted cross-entropy and we evaluate whether the 
improvement is significant with 1-tailed Welch t-tests 
with Bonferroni correction. Furthermore, to contextual-
ize the performance of LightGBM with custom loss func-
tions, we compare the best performing model from our 
study to the models reported by Jiang et al. for Molecu-
leNet and by Arshadi et al. for MolData. All models from 
these papers employed weighted cross-entropy or class 
balancing schemes to model activity imbalance, depend-
ing on the underlying classification algorithm.

In the first study, four descriptor-based machine-learn-
ing methods and four graph-based neural networks were 
investigated. The descriptor-based models were Random 
Forest (RF), Support Vector Machine (SVM), XGBoost 
(XGB) and a neural network with dense layers (DNN), 
using a combination of 1D and 2D descriptors as well as 
two sets of fingerprints [13]. For the graph-based models, 
they considered a graph convolutional network (GCN), a 
graph attention network (GAT), a message-passing neu-
ral network (MPNN) and attentive fingerprints (AFP) 
[13]. For conciseness, for each MoleculeNet dataset we 
report the performance of the best descriptor-based 
model and graph-based model and we compare them 
to the best-performing LightGBM model using 2-tailed 
Welch t-tests with Bonferroni correction.

In the second study, the authors developed a multitask 
DNN on ECFP fingerprints with bit size 1024 and radius 
2 and a multitask GCN. For these baselines, we omit sta-
tistical tests since the authors did not report standard 
deviations for their results.
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The benchmarking details for all datasets are summa-
rized in Table 2.

Results
Moleculenet benchmarks
The results for the datasets from MoleculeNet are sum-
marized in Table 3 and Fig. 1, while the p-values for the 
statistical tests are outlined in Additional file 1: Tables S8, 
S9, S10 and S14. The performance across all metrics for 
these datasets is shown in Additional file 1: Tables S2, S3 
and S4.

Focal loss, Logit-adjusted loss and LDAM loss signifi-
cantly outperform the weighted cross-entropy baseline 
for the HIV dataset. The best performing loss function is 
LDAM loss (0.833 ROC AUC), closely followed by Focal 
loss. Equalization loss achieves the lowest ROC-AUC 
out of all custom loss functions. Considering all met-
rics, Focal loss achieves the best performance in terms of 
PR-AUC, accuracy, F1 score and MCC and Equalization 
loss achieves the best precision value. With the excep-
tion of the F1 score, all differences are statistically signifi-
cant. In terms of recall and balanced accuracy however, 

WCE outperforms all alternatives. Compared to the best 
descriptor-based model (SVM) and graph-based model 
(GCN) from Jiang et  al., the LightGBM model with 
LDAM loss significantly outperforms the former and 
matches the ROC-AUC from the latter. The improve-
ment on this dataset is especially significant, given that 
the weighted cross-entropy baseline is outperformed by 
both alternatives from Jiang et al.

For Tox21, similarly to the previous dataset, all custom 
losses with the exception of Equalization loss significantly 
outperform the weighted cross-entropy baseline in terms 
of ROC-AUC. Logit-adjusted loss achieves the best ROC-
AUC with 0.812, narrowly outperforming LDAM loss 
and Focal loss. In terms of global performance however, 
LDAM loss has the most success, outperforming all alter-
natives on four metrics (PR-AUC, accuracy, precision, 
MCC), but except for precision and accuracy the differ-
ences are not statistically significant compared to the 
baseline. WCE achieves the best performance in terms 
of balanced accuracy, recall and F1 score. When compar-
ing to the best models from Jiang et al., both options (RF 
and AFP) significantly outperform the Gradient Boosting 

Table 2 Summary of the benchmarking procedure for each dataset employed in this study

Name Split Replicates Metrics for external comparison External baselines

HIV Random 50 ROC-AUC RF, SVM, XGB, DNN, GCN, GAT, MPNN, AFP

Tox21 Random 50 ROC-AUC RF, SVM, XGB, DNN, GCN, GAT, MPNN, AFP

MUV Random 50 PR-AUC RF, SVM, XGB, DNN, GCN, GAT, MPNN, AFP

Phosphatase Scaffold 5 Accuracy, precision, recall, F1 score, ROC-AUC DNN, GCN

NTPase Scaffold 5 Accuracy, precision, recall, F1 score, ROC-AUC DNN, GCN

HTS Scaffold 5 Not applicable Not applicable

Table 3 Summary of the results for the datasets belonging to the MoleculeNet repository

The best values for each metric in each dataset are highlighted in bold

Name Metric WCE FC LA EQ LDAM Best descriptor-based Best graph-based

HIV ROC-AUC 0.811 ± 0.02 0.831 ± 0.01 0.823 ± 0.03 0.809 ± 0.02 0.833 ± 0.02 0.822 ± 0.02 0.833 ± 0.02
Tox21 ROC-AUC 0.790 ± 0.01 0.808 ± 0.01 0.812 ± 0.01 0.781 ± 0.02 0.808 ± 0.01 0.838 ± 0.01 0.852 ± 0.01
MUV PR-AUC 0.152 ± 0.03 0.127 ± 0.02 0.140 ± 0.03 0.126 ± 0.03 0.141 ± 0.03 0.112 ± 0.04 0.061 ± 0.03

Fig. 1 Summary of the benchmarking results for the MoleculeNet datasets. Error bars represent the standard error of the mean (N = 50), while the 
asterisks denote whether the difference is significant (one indicates α < 0.05, two α < 0.01). The statistical tests with Bonferroni correction are carried 
out with respect to WCE or to the best performing loss function. We define the differences between loss functions within LightGBM as performance 
comparisons, while classifier comparisons refer to the benchmarking of the best loss function against the classifiers from Jiang et al. a Loss function 
comparison on the HIV dataset. b Comparison between the best loss function and the best models from Jiang et al. on the HIV dataset c Loss 
function comparison on the Tox21 dataset. d Comparison between the best loss function and the best models from Jiang et al. on the Tox21 
dataset. e Loss function comparison on the MUV dataset. f Comparison between the best loss function and the best models from Jiang et al. on the 
MUV dataset

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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classifier with Logit-adjusted loss, possibly pointing to 
the fact that LightGBM might not be a good option for 
this dataset. Unlike XGBoost, LightGBM employs a leaf-
wise tree splitting procedure, which is known to poten-
tially lead to more complex structures that might overfit 
on small datasets [31, 32]. Among the datasets tested, 
Tox21 has the least compounds per task, which might 
explain why LightGBM performs comparatively poorly.

Regarding MUV, none of the custom losses are able to 
outperform the weighted cross-entropy baseline in any 
metric except accuracy. This is especially surprising con-
sidering that MUV is the most imbalanced dataset con-
sidered in this study, where one would expect to observe 
the greatest improvement over the baseline. This could 
be explained by the fact that the custom loss functions 
must optimize additional hyperparameters related to the 
loss, which have a strong impact on the performance of 
the classifier [27]. Since all classifiers generally achieve 
low PR-AUC values for this dataset, tuning these addi-
tional parameters could lead to a very noisy optimization 
process leading to an inferior optimum for a given num-
ber of iterations. Increasing the number of optimization 
evaluations could mitigate this issue.

Among the custom loss functions, LDAM loss per-
forms the best with a PR-AUC value of 0.141, closely fol-
lowed by Logit-adjusted loss. Interestingly, all LightGBM 
models are able to outperform all models from Jiang et al. 
Indeed, for this dataset LightGBM achieves more than 
double the performance reported for XGBoost in their 
paper. This again could be related to the differences in 
the tree-splitting procedure between the two implemen-
tations. Finally, the dataset also highlights the issues of 
data-driven representations when dealing with extreme 
imbalance, since in this benchmark all graph-based 
approaches achieve substantially lower performance than 
descriptor-based classifiers.

Moldata benchmarks
The custom loss functions were next evaluated using the 
MolData datasets.

All custom loss functions significantly outperform the 
weighted cross-entropy baseline for the Phosphatase 
dataset in terms of accuracy, precision (except Logit-
adjusted loss) and ROC-AUC (Table 4, Additional file 1: 
Table  S5 and Fig.  2, p-values for the statistical tests 
outlined in Additional file  1: Table  S11). The only met-
rics where the baseline still outperforms the alterna-
tives are recall and balanced accuracy. The F1 score for 
Logit-adjusted loss is higher, indicating that the trade-
off between precision and recall is generally favorable, 
however the difference is not statistically significant. In 
terms of MCC and PR-AUC, LA loss achieves the best 
performance, significantly outperforming the baseline on 
both metrics. Compared to the multitask networks from 
Arshadi and coworkers, Focal loss outperforms them in 
all metrics except recall. The improvement is especially 
noticeable in terms of precision, achieving more than 
double the value reported for the GCN model.

For the NTPase benchmark, Logit-adjusted loss stands 
out as the best option, significantly outperforming the 
baseline in terms of precision, ROC-AUC and MCC 
(Table 4, Additional file 1: Table S6 and Fig. 2, p-values 
in Additional file  1: Table  S12). LDAM loss and Focal 
loss also improve over the baseline, but the trend is not 
as consistent as for Logit-adjusted loss across all metrics. 
When comparing it to the baselines from Arshadi and 
coworkers, similarly to the results for the Phosphatase 
dataset, Logit-adjusted loss outperforms both multitask 
networks in all metrics except recall. The improvement is 
especially noticeable for ROC-AUC, going from 0.76 to 
0.85.

Table 4 Summary of the benchmarking results for the datasets in the MolData repository

The best values for each metric in each dataset are highlighted in bold

Name Metric WCE FC LA EQ LDAM DNN—Arshadi GCN –Arshadi

Phosphatase Accuracy 0.989 ± 0.0005 0.992 ± 4E-4 0.992 ± 3E-4 0.992 ± 7E-4 0.992 ± 2E-4 0.885 0.984

Precision 0.356 ± 0.01 0.455 ± 0.05 0.431 ± 0.06 0.571 ± 0.01 0.567 ± 0.05 0.027 0.144

Recall 0.139 ± 0.006 0.125 ± 0.01 0.135 ± 0.01 0.085 ± 0.02 0.109 ± 0.03 0.459 0.191

F1 score 0.200 ± 0.003 0.196 ± 0.01 0.206 ± 0.01 0.148 ± 0.01 0.182 ± 0.02 0.052 0.164

ROC-AUC 0.814 ± 0.0005 0.830 ± 0.001 0.830 ± 0.01 0.821 ± 0.0003 0.825 ± 0.0008 0.739 0.815

NTPase Accuracy 0.945 ± 0.001 0.945 ± 0.004 0.945 ± 0.0004 0.899 ± 0.02 0.946 ± 0.005 0.854 0.933

Precision 0.381 ± 0.01 0.417 ± 0.01 0.472 ± 0.01 0.344 ± 0.04 0.488 ± 0.006 0.138 0.267

Recall 0.300 ± 0.007 0.294 ± 0.005 0.267 ± 0.003 0.250 ± 0.02 0.255 ± 0.005 0.526 0.095

F1 score 0.336 ± 0.003 0.345 ± 0.004 0.341 ± 0.005 0.289 ± 0.03 0.335 ± 0.003 0.219 0.141

ROC-AUC 0.821 ± 0.01 0.787 ± 0.01 0.852 ± 0.01 0.764 ± 0.007 0.827 ± 0.02 0.763 0.763
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Fig. 2 Summary of the benchmarking results for the MolData datasets. Error bars represent the standard error of the mean (N = 5), while the 
asterisks denote whether the difference is significant (one indicates α < 0.05, two α < 0.01). The statistical tests with Bonferroni correction are 
carried out with respect to WCE. We define the differences between loss functions within LightGBM as performance comparisons, while classifier 
comparisons refer to the benchmarking of the best loss function against the classifiers from Arshadi et al. a Loss function comparison on the 
Phosphatase dataset. b Comparison between the best loss function and the best models from Arshadi et al. on the Phosphatase dataset c Loss 
function comparison on the NTPase dataset. d Comparison between the best loss function and the best models from Arshadi et al. on the NTPase 
dataset
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Proprietary dataset benchmark
All loss functions, except Equalization loss, achieve excel-
lent performance on the real-world industrial dataset, 
with ROC-AUC values above 0.9 (Fig.  3 and Additional 
file 1: Table S14, p-values for the statistical tests can be 
found in Additional file 1: Table S15). Focal loss, LDAM 
loss and Logit-adjusted loss significantly outperform the 
weighted cross-entropy baseline, consistently with the 
trends observed in the academic datasets. However, the 
relative increases between the baseline and the custom 
loss functions are minimal in terms of magnitude. This is 
likely because these classifiers already achieve near per-
fect performance, making it difficult to achieve substan-
tial improvements. Considering the other metrics, Focal 
loss achieves the best performance on all metrics except 
balanced accuracy and recall, significantly outperforming 
the baseline in PR-AUC, precision, F1 score, MCC and 
accuracy. Logit-adjusted loss performs similarly to Focal 
loss, matching its performance in terms of MCC and PR-
AUC while obtaining higher balanced accuracy.

Influence on convergence speed
To assess whether changing the loss function affects the 
number of boosting iterations required for convergence, 
we analyzed the number of trees and time required to 
fit the HIV dataset for each loss function. To do so, we 
optimized the hyperparameters of each classifier and 
measured the training time and number of trees on five 
80:20 training-validation splits, using the external set 
for early stopping. The whole procedure was repeated 
three times, to ensure that the findings are independ-
ent of specific optima obtained during the optimization 
phase, for a total of 15 measurements per loss function. 
The results are summarized in Fig.  4, Additional file  1: 

Table S16 and Additional file 1: Table S17.  Interestingly, 
the weighted cross-entropy baseline is the most compu-
tationally expensive option on average, requiring on aver-
age around 4900 boosting iterations and 59  s to fit the 
dataset. LDAM loss is the fastest loss function on average 
(7  s), closely followed by Logit-adjusted loss (13  s) and 
Focal loss (19 s). Equalization loss has the widest spread 
in terms of boosting iterations and training time, likely 
arising from training instability for this loss function.

Discussion
Remarkably, on five out of six datasets investigated, 
at least one custom loss function outperformed the 
weighted cross-entropy baseline. These findings display 
that our approach is robust to a wide variety of end-
points, dataset sizes and imbalance rates, including real 
world data. On average, the Equalization loss performed 
the worst, while Logit-adjusted loss achieved consist-
ently strong performance across all datasets, followed by 
LDAM loss and Focal loss.

One possible explanation for the lower effectiveness of 
Equalization loss might be that approximating one mini-
batch with the fitting of one boosted tree is not appro-
priate, thus rendering the accumulated gradient ratios 
unreliable. This is further confirmed by the high instabil-
ity of the gradients we observed while implementing this 
loss for Gradient Boosting, which we attempted to cor-
rect using gradient clipping. Moreover, it is interesting 
that this custom loss function, which is the most similar 
to weighted cross-entropy since it relies on dynamically 
weighting the two class contributions, is also the one 
achieving the poorest performance. This further high-
lights the need for alternative approaches such as apply-
ing a class-specific offset to the raw logits (LDAM loss 

Fig. 3 Benchmarking results for the proprietary HTS dataset. Error 
bars represent the standard error of the mean (N = 5), while the 
asterisks denote whether the difference is significant (one indicates 
α < 0.05, two α < 0.01). The statistical tests are carried out with respect 
to WCE

Fig. 4 Convergence speed comparison between weighted 
cross-entropy and the custom loss functions. Each dot represents a 
fit iteration in terms of boosting iterations required to trigger early 
stopping and computational time
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and Logit-adjusted loss), or dampening the influence of 
well-classified samples (Focal loss).

When analyzing our results across all metrics, one rel-
evant finding is that using custom loss functions leads to 
an overall increase in precision at the expense of recall 
when comparing to the weighted cross-entropy baseline. 
Depending on the context and purpose for which these 
datasets are modeled, the increase in precision might 
be extremely beneficial, i.e. in settings where experi-
mental testing is expensive so it is paramount to reduce 
the number of false positives. Another interesting trend 
is the systematic increase in accuracy compared to the 
baseline, however this is not significant considering the 
inadequacy of this metric for imbalanced classification. 
In terms of global performance however, our proposed 
modifications still lead to better models overall, as indi-
cated by generally higher MCC, ROC-AUC, PR-AUC and 
F1 scores across five out of six datasets. Furthermore, the 
increase in performance in terms of MCC is especially 
significant, given that this metric is known to perform 
extremely well in ranking classifiers when dealing with 
class imbalance [41]. It should be noted however that if 
the target metric is balanced accuracy, the baseline would 
be a more indicated choice of loss function since it con-
sistently outperforms all alternatives.

Regarding the comparison with the external base-
lines from Arshadi et  al. and Jiang et  al., implementing 
the custom loss functions discussed in this study allows 
LightGBM to match or outperform the best models from 
those studies in four out of five datasets. This result is 
noteworthy considering the wide variety and complexity 
of the approaches employed by Jiang et  al. and the fact 
that Gradient Boosting does not benefit from multitask 
learning, unlike the approaches from Arshadi et al. These 
findings highlight the importance of properly addressing 
imbalance with bespoke approaches rather than relying 
on simpler loss weighting schemes.

Regarding the convergence time, all losses required 
less iterations and training time than the weighted cross-
entropy baseline, speeding up the computation by a fac-
tor of 8 for LDAM loss, 4 for Logit-adjusted loss, 3 for 
Focal loss and 1.2 for Equalization loss. One possible 
explanation for this could be that the modifications of 
cross-entropy investigated in this study provide more 
informative gradients, leading to faster convergence [44, 
45]. This phenomenon could be caused by the inclusion 
of prior class probabilities in the loss formulation (Logit-
adjusted and LDAM losses), or by forcing the total loss to 
be more dependent on hard to classify examples (Focal 
loss).

In summary, considering both the performance 
improvement and the influence on convergence time, 
Logit-adjusted and LDAM loss are the best options 

for tuning Gradient Boosting for imbalanced bioassay 
modelling. Interestingly, both approaches rely on logit 
shifting, which seems to indicate that this strategy is pref-
erable than weighting approaches like Equalization loss 
or Focal loss, in agreement with the findings from Menon 
and coworkers [27]. Furthermore, both options, given 
sufficient hyperparameter optimization, can converge 
back to the original cross-entropy formulation, meaning 
that they are a suitable option even on datasets where the 
baseline might achieve better performance.

Finally, LightGBM with these modifications is a strong, 
efficient and interpretable baseline for future works on 
ligand-based virtual screening. This will provide an out-
of-the-box solution for quickly modelling large bioassay 
data and will serve as a meaningful benchmark for more 
complex algorithms on imbalanced datasets.

Conclusion
In this study, we investigated the effectiveness of custom 
loss functions applied to Gradient Boosting for modelling 
extremely imbalanced bioassay data. To answer this ques-
tion, we evaluated our approach against weighted cross-
entropy, the current de-facto standard for imbalanced 
data classification, and a variety of classifiers from previ-
ous studies involving approximately 2 million compounds 
and 42 tasks from public and proprietary sources.

Our results show that all bespoke loss functions achieve 
statistically significant improvement over weighted 
cross-entropy across 5 out of 6 benchmarks, the most 
promising being Logit-adjusted loss and LDAM loss. Fur-
thermore, thanks to these modifications, Gradient Boost-
ing is able to match or outperform the best classifiers of 
other benchmarks for four out of five datasets. Addition-
ally, the use of custom loss reduces the training time and 
computational cost for gradient boosting, as highlighted 
in our convergence iteration comparison.

The significance of these results is three-fold. First, 
they show the importance of appropriately tackling class 
imbalance with custom loss functions, an approach that 
has not been thoroughly investigated in the context of 
drug discovery until now. These modifications are par-
ticularly promising considering their widespread success 
in computer vision and could substitute or complement 
resampling-based approaches, which are already well 
established for bioassay modelling [5, 29, 30]. Second, 
they highlight the efficacy of Gradient Boosting cou-
pled with proper loss functions for modelling extremely 
imbalanced bioassay data. This is relevant because Gradi-
ent Boosting has a unique set of advantages over other 
classifiers such as excellent scalability to large datasets 
[31, 32, 39], straightforward interpretability [17] and 
ease of optimization [19]. Third, our analysis shows that 
logit-shifting modifications of the cross-entropy loss 
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are generally more performant than weighting-based 
approaches for gradient boosting. This provides a solid 
foundation for developing novel loss functions and sim-
plifies the choice of loss function when modelling imbal-
anced data.

Finally, our implementation, available at https:// github. 
com/ dahvi da/ gradi ent_ boost ing_ CLF, is designed to 
handle any function definition with minimal external 
package dependencies to streamline the implementation 
of alternative loss functions for Gradient Boosting. We 
hope this will accelerate further research on newer loss 
functions for class imbalance, i.e. combo losses [46], as 
well as for regular classification, for example 0–1 losses 
with Langevin gradient descent [47].
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