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Abstract 

Artificial intelligence (AI)-based molecular design methods, especially deep generative models for generating novel 
molecule structures, have gratified our imagination to explore unknown chemical space without relying on brute-
force exploration. However, whether designed by AI or human experts, the molecules need to be accessibly synthe-
sized and biologically evaluated, and the trial-and-error process remains a resources-intensive endeavor. Therefore, 
AI-based drug design methods face a major challenge of how to prioritize the molecular structures with potential for 
subsequent drug development. This study indicates that common filtering approaches based on traditional screen-
ing metrics fail to differentiate AI-designed molecules. To address this issue, we propose a novel molecular filtering 
method, MolFilterGAN, based on a progressively augmented generative adversarial network. Comparative analysis 
shows that MolFilterGAN outperforms conventional screening approaches based on drug-likeness or synthetic ability 
metrics. Retrospective analysis of AI-designed discoidin domain receptor 1 (DDR1) inhibitors shows that MolFilterGAN 
significantly increases the efficiency of molecular triaging. Further evaluation of MolFilterGAN on eight external ligand 
sets suggests that MolFilterGAN is useful in triaging or enriching bioactive compounds across a wide range of target 
types. These results highlighted the importance of MolFilterGAN in evaluating molecules integrally and further accel-
erating molecular discovery especially combined with advanced AI generative models.
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Introduction
It has always been the dream of medicinal chemists to 
design molecules from scratch that meet predefined 
requirements. However, due to the complexity of drug-
target interactions and insufficient understanding of 
structure–property relationships, it is challenging to find 
an explicit inverse mapping function to derive chemical 
structures from the molecular activity or physicochemi-
cal properties or absorption, distribution, metabolism, 
excretion and toxicity (ADMET) properties [1, 2]. Deep 
generative models such as variational autoencoders 
(VAEs) [3, 4], generative adversarial networks (GANs) [5, 
6], recurrent neural networks (RNNs) [7–10], flow-based 
models [11, 12], transformer-based models [13, 14], dif-
fusion models [15, 16] and variants or combinations of 
these models [17–21] have quickly advanced and opened 
a new path for generating molecules without an explicit 
inverse mapping function [1, 22]. These models can be 
easily used to sample novel molecular structures. Moreo-
ver, when combined with Bayesian optimization [3, 23], 
genetic algorithms [24, 25] or reinforcement learning 
[26–32], generative models are capable of optimizing hits 
in the desired direction in silico. In the past few years, 
generative models have been successfully applied in hit 
discovery and have shown promise in hit-to-lead optimi-
zation [19, 29, 33–41].

In the field of generative algorithms, many efforts have 
been devoted to achieving better performance on related 
evaluation metrics such as validity (the proportion of 
chemically valid molecules), uniqueness (the propor-
tion of non-repetitive molecules), novelty (the propor-
tion of unique molecules not included in the training set) 
or diversity. However, these metrics are not sufficient to 
characterize the potential of molecules for subsequent 
development [18–20, 27, 42–44] (see Fig. 1). In addition, 
considering that the molecular generation process can be 
easily scaled up, an equally or even more important issue 
is how to select from the generated molecules for subse-
quent synthesis and biological evaluation [1, 45–48]. For 
example, in a report by Zhavoronkov et  al., multi-step 
procedures including many in-house defined filtering 

methods and expert evaluation by medicinal chemists 
were adopted in selecting AI designed molecules, which 
are not readily applicable to other drug design scenes 
[29].

Many empirical or machine learning-based metrics 
have been developed for quickly evaluating the potential 
of molecules. For example, Lipinski summarized the rule-
of-five (RO5) from drugs at the time to evaluate the drug-
likeness of molecules [49]. Bickerton et  al. proposed the 
quantitative estimate of drug-likeness (QED) by construct-
ing a multivariate nonlinear function from orally adminis-
tered drugs and known protein ligands (deposited in the 
Protein Data Bank [50]) to quantify the drug-likeness of 
molecules [51]. Ertl et al. proposed synthetic accessibility 
(SA) to quantify the synthesizability of molecules by using 
a fragment contribution approach, where rarer fragments 
(as judged by their abundance in the PubChem database) 
are taken as an indication of lower synthesizability [52]. 
Lovering et al. proposed  Fsp3 by counting the proportion 
of  sp3 hybridized carbon atoms in total number of carbon 
atoms to quantify the complexity of spatial structures of 
molecules [53, 54]. Ivanenkov et al. proposed MCE-18 by 
counting the presence or proportion of certain structural 
features (e.g., aromatic or heteroaromatic ring (AR), ali-
phatic or heteroaliphatic ring (NAR), chiral center (CHI-
RAL), and spiro point (SPIRO)) to quantify the novelty 
of molecules [55]. While several studies have used some 
above metrics to compare the performance of different 
generative models, how these metrics themselves perform 
has rarely been discussed in such studies [46, 56].

Recently, AI-based approaches have also been devel-
oped for molecule filtering to consider molecular prop-
erties implicitly. For example, Hu et  al. trained an 
autoencoder (AE) to classify drug-like molecules (ZINC 
World Drug) and non-drug-like molecules (ZINC All 
Purchasable) [57]. Hooshmand et  al. [58] and Lee et  al. 
[59] developed self-supervised and unsupervised learn-
ing methods to make full use of unlabeled data and pre-
dict new drug candidates. Beker et  al. extended Hu’s 
work and improved the discrimination ability by combin-
ing several different classifiers like multilayer perceptrons 
(MLP), graph convolutional neural networks (GCNN) 
and AE with uncertainty quantification from Bayesian 
neural networks (BNNs). Though BNN (AE + GCNN), 
which combines AE and GCNN classifiers, was reported 
to distinguish drugs from non-drug-like molecules with 
a 93% accuracy, it failed to recognize common hydro-
carbons (e.g., benzene or toluene) as non-drug-like mol-
ecules [60]. Overall, all these models are not suitable for 
all scenarios and were trained and evaluated on dispa-
rate datasets. It remains a question how well these met-
rics will be when they are used for triaging molecules 
designed by advanced AI methods.

Fig. 1 The dilemma of the generative model and the contribution of 
this work
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In this study, we first discuss the effectiveness of exist-
ing metrics or models on eight benchmark datasets, 
wherein the molecules are derived from different gener-
ated models, common compounds databases, bioactivity 
databases and approved drug library. Second, we propose 
MolFilterGAN to distinguish the potential of molecules 
from different sources and accelerate the virtual screen-
ing progress without expert-dependent knowledges. 
Specifically, the generator tries to generate molecules 
that the discriminator considers “real” (more like known 
drugs or bioactive molecules reported), while the dis-
criminator tries to distinguish between “fake” (more like 
randomly synthesized organic compounds without obvi-
ous application purpose) molecules and “real” molecules. 
After adversarial training, the discrimination logits of 
final discriminator may serve as a molecule filtering met-
ric for deep generative models. Furthermore, we analyze 
the effectiveness of the progressively augmentation strat-
egy which means sampling from the produced molecules 
of the generator of MolFilterGAN at different adversarial 
training stages to improve the quality of sampling instead 
of just sampling from a fixed chemical space. In this way, 
the gradually fine-tuned generator will produce more 
diverse and balanced negative samples that are increas-
ingly confusing to the discriminator and thus enable the 
discriminator to gain better discrimination and generali-
zation capability [61, 62].

Methods
Data preprocessing
The data cleaning procedures were similar to those used 
by Hu et al. [57] and the following steps are consistent for 
all raw data collected: (1) Molecules containing elements 
beyond H, C, N, O, F, P, S, Cl, Br or I were removed. (2) 
Molecules containing isotopes were removed. (3) Dupli-
cative molecules were removed. (4) To reduce data bias, 
molecules with long aliphatic chains (> 4), polyhydroxyl 
groups (> 10), MW > 750, and atom numbers < 10 were 
removed. (5) All molecules were transformed to canoni-
cal simplified molecular input line entry specifications 
(SMILESs) with atom chiral information included [63]. 
(6) Furthermore, a vocabulary was constructed for pro-
cessing the input SMILES of MolFilterGAN into tokens 
and those SMILESs containing out-of-vocabulary tokens 
were removed (for details of the vocabulary, see Addi-
tional file 1: Table S1).

Benchmark datasets
To compare existing molecular filtering metrics, eight 
different datasets were prepared to represent the chemi-
cal space of AI-designed molecules, synthetically acces-
sible molecules, bioactive molecules and approved 

drugs. Specifically, 10,000 molecules were sampled from 
each of three advanced generative approaches, includ-
ing the graph-based genetic algorithm [46, 64] (GA), 
GENTRL trained with a filtered (molecular weight rang-
ing from 250 to 350, rotatable bonds not greater than 7 
and XlogP less than or equal to 3.5) ZINC database [29] 
(VAE-ZINC-S) and LSTM model trained with the ZINC 
database [7] (LSTM-ZINC). In addition, we separately 
sampled 10,000 molecules from ZINC [65] and REAL 
[66] to represent the general accessible chemical space. 
Moreover, we sampled 10,000 molecules from ChEMBL 
[67] (a manually curated validated bioactive compound 
database) and the Chinese Natural Product Database 
(CNPD) [68] respectively, which represent the bioac-
tive chemical space. In the end, 748 drug candidates that 
passed phase III clinical trials were collected from Cor-
tellis to represent the drug chemical space (Cortellis-
Drugs, https:// clari vate. com/ corte llis/, 2020).

Molecular representation
Generally, molecules are represented as graphs in which 
atoms are labeled nodes and bonds are edges labeled with 
the bond order (such as single, double or triple). In the 
field of natural language processing, the input and output 
of the model are usually sequences of words or tokens. 
We therefore employed SMILES, which encodes molec-
ular graphs as human-readable strings. The SMILES 
grammar describes the molecular structure with charac-
teristics, e.g., c and C for aromatic and aliphatic carbon 
atoms, O for oxygen atoms, and −, =, and # for single, 
double, and triple bonds, respectively (see Fig.  2a). In 
addition, SMILES is, in most cases, tokenized based on a 
single character. Here, some optimizations were applied 
according to Olivecrona’s work to reduce the generation 
of invalid SMILES [32], including single atoms repre-
sented by multiple characters, such as [C@H], [C@@H], 
[nH], [C@@], [C@], [S@], [S@@] and [H], which were 
treated as one token, and Cl and Br were replaced by L 
and R, respectively. For the generator, both the input and 
output are SMILES strings. For the discriminator, the 
input is a SMILES string (molecule), while the output is 
the probability that the discriminator thinks the string is 
from the “real” samples (positive set).

The generative model
The molecule generation problem is denoted as fol-
lows. Given a real-world dataset, a θ parameterized 
generative model ( Gθ ) is trained to produce a sequence 
( m o l e c u l e ) W1:T = (w1, . . . ,wt , . . . ,wT ),wt ∈ V  , 
where V  is the token vocabulary and T  is the length 
of the sequence. This problem can be interpreted 
from the perspective of reinforcement learning [69]. 
At time step t + 1 , the state s represents the tokens 

https://clarivate.com/cortellis/
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produced ( W1:t = (w1, . . . ,wt) ), and action a is the 
next token to choose ( wt+1 ∈ V  ). Thus, the generation 
of sequences (molecules) is determined by the pol-
icy model Gθ (wt+1|W1:t) . As shown in Fig.  2b, a RNN 
maps the prior hidden state ht−1 as well as the current 
input token embedding representation xt into hidden 
state ht at time step t by using the update function f  
recursively:

Additionally, a softmax layer z maps the hidden states 
into the output token probability distribution:

where c is a bias vector and M is a weight matrix. In this 
research, three long-short-term memory (LSTM) cells 
were used to implement the update function f  in Eq. (1) 
[70]. (For more details, see Additional file 1: Table S2)

(1)ht = f (ht−1, xt),

(2)
p(wt+1|w1, . . . ,wt) = z(ht) = softmax(c +Mht),

The discriminative model
The discriminative model is shown in Fig.  2c. In this 
study, a convolutional neural network (CNN) [71] was 
chosen to train the discriminative model ( Dϕ ), as it has 
been successfully applied for many sequence-based 
molecular classifications [70, 72]. The input embedding 
representation ε1:T of the sequence with a length of T are 
represented as:

where xt ∈ R
k is a token embedding vector and ⊕ is the 

concatenation operator for building ε1:T ∈ R
T×k . Then, a 

kernel matrix ω ∈ R
l×k is used for applying the convolu-

tional operation to a window size of ( l ) words to produce 
a new feature map ci:

where ⊗ defines the summation of element-wise produc-
tion, b is a bias term and ρ is a nonlinear function. Here, 
various kernels with different window sizes are used to 
extract different features. After that, max-pooling and 

(3)ε1:T = x1 ⊕ · · · ⊕ xt ⊕ · · · ⊕ xT ,

(4)ci = ρ
(

ω ⊗ εi:i+l−1 + b
)

,

Fig. 2 Introduction of MolFilterGAN. a Molecular representation. A molecule is represented as a SMILES string with a length of T  . b The generator 
Gθ contains three LSTM cells and one linear layer. Both the input and output of Gθ are SMILES strings. c The discriminator Dϕ . The input is a SMILES 
string, and the output is the probability that the sample belongs to the positive set. The SMILES string is first embedded into a T× k matrix, where 
T  is the length of the string and k is the size of each embedding vector. Then, multiscale convolution kernels ((1, k), (2, k), (…, k)), max-pooling and 
a concatenation operation are applied. Finally, a linear layer is used to output the probability. d Adversarial training. The generator is tuned by 
maximizing the rewards predicted by the discriminator. The discriminator is tuned by minimizing the error of discriminating between “fake” samples 
from the generator (negative set) and “real” samples (positive set)
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a concatenation operation are applied over the feature 
maps. Finally, a fully connected layer is used to output 
the probability that the discriminator thinks the input 
sequence (molecule) is from the “real” samples (positive 
set) [70]. (For more details, see Additional file 1: Table S3)

Adversarial training
The generative model ( Gθ ) is trained to produce SMILES 
samples. In contrast, the discriminative model ( Dϕ ) is 
trained to distinguish between “real” samples and “fake” 
samples. As shown in Fig. 2d, Gθ is trained to deceive Dϕ , 
and Dϕ is trained to correctly identify whether samples 
come from Gθ or the positive set. Both models are trained 
in alternation during adversarial training. Specifically, Gθ 
is trained as an agent in a reinforcement learning context 
using the REINFORCE algorithm [73]. The agent’s policy 
is given by Gθ (wt+1|W1:t) , and the objective function 
( J (θ) ) of Gθ (wt+1|W1:t) is represented as:

where st is the state of the agent at step t , a is the next 
action to choose, V  is the vocabulary tokens and 
Q(st , a) is the action-value function that represents the 
expected reward of taking action a at state st . At step 
T − 1 , Q(sT−1 = W1:T−1, a = wT ) can be predicted by 
Dϕ(W1:T ) . Since we also want to calculate the action-
value for incomplete sequences at intermediate time 
steps, N Monte Carlo searches are applied to policy Gθ:

where Wn
1:t=W1:t and Wn

t+1:T is sampled by Gθ . Now 
action-value becomes:

An unbiased estimation of the gradient of J (θ) can be 
derived as:

where expectation E[·] is approximated by sampling 
methods. Then, Gθ can be updated as:

(5)J (θ) =
∑

a∈V

Gθ (a|st) · Q(st , a),

(6)
MCGθ (W1:t;N ) =

{

W 1
1:T , . . . ,W

n
1:T , . . . ,W

N
1:T

}

,

(7)

Q(W1:t , at+1) =

{

1
N

∑N
n=1 Dϕ

(

MCGθ
(

Wn
1:t;N

))

t < T − 1

Dϕ

(

Wn
1:T

)

, t = T − 1

(8)

∇θ J (θ) ≃
1

T

T
∑

t=1

Eat+1∼Gθ (at+1|W1:t)

[∇θ logGθ (at+1|W1:t) · Q(W1:t , at+1)],

(9)θ ← θ + α∇θ J (θ),

where α is the learning rate. Once Gθ is updated, Dϕ can 
be tuned as:

where W  and W ‘ are the samples (molecules) from the 
positive set and negative set (sampled from Gθ ), respec-
tively [69].

Details for training MolFilterGAN
To develop MolFilterGAN’s capability to quantify the 
likelihood that compounds are worthy of further devel-
opment, a positive set (“real” samples) is needed to allow 
MolFilterGAN  to implicitly learn which kind of mol-
ecules are more desirable. Here, the “real” samples were 
collected from DrugBank [74] (9662), DrugCentral [75] 
(4053), SuperDRUG2 [76] (3982), CDEK [77] (4421) 
and Cortellis (25,217, all compounds except those that 
have passed phase III clinical trials). These compounds 
from different sources were first cleaned up through 
the data preprocessing steps described above and then 
merged to remove duplications as well as those present 
in the benchmark sets, resulting in a total of 15,955 “real” 
samples.

Before the adversarial process begins, the initial gen-
erator and discriminator of MolFilterGAN need to be 
trained respectively in advance.

The initial generator was trained with samples from the 
ZINC [65] library, which is a repository of commercially 
available small molecules and contains a high propor-
tion of non-drug-like members [60]. A total of 5,000,000 
molecules (molecules were first cleaned up with the data 
preprocessing steps, and those present in the benchmark 
sets were removed, resulting in a total of 4,338,796 mol-
ecules) were randomly sampled from ZINC to make the 
selected structures as diverse as possible. During train-
ing, 100,000 molecules were randomly chosen for moni-
toring the state of the generator as the validation set, and 
the remaining ones were used as the training set. The 
initial generator was trained with a batch size of 512 and 
a learning rate of 0.0001, and the training process was 
stopped when the mean loss value on the validation set 
did not decrease for one epoch to avoid overfitting (see 
Additional file 1: Fig. S1a).

To train the initial discriminator, the positive set and 
negative set should be provided. In this research, the 
above collected 15,955 “real” samples were used as the 
positive set, and the same amount of samples from the 
GA model were used as the negative set (all negative 
samples were not included in benchmark sets). Then, the 

(10)

min
ϕ

− EW∼preal

[

logDϕ(W )
]

− EW ‘∼Gθ

[

log(1− Dϕ

(

W ‘
)]
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positive set and negative set were merged and further 
split into a training set, validation set and internal test 
set at 8:1:1 to train the initial discriminator. The initial 
discriminator was trained with a batch size of 128 and a 
learning rate of 0.0001. The training process was stopped 
when the mean loss value on the validation set did not 
decrease for one epoch (see Additional file 1: Fig. S1b).

During the adversarial training process, the generator 
was tuned with a learning rate of 0.0001. The batch size 
was set to 64, meaning that an update was about to be 
made to the generator after every 64 sequences had been 
generated and scored. In order to gradually increase the 
task difficulty of the discriminator by progressively aug-
menting its input or feature space, here, a batch of 64 
“real” samples were randomly chosen from 15,955 com-
pounds to fine tune the generator during each update. In 
this way, the generator can be progressively augmented 
by the drug-like set, and is able to generate samples that 
are increasingly confusing to the discriminator and thus 
enabling the discriminator to have a better discrimina-
tion capability. Meanwhile, the discriminator was tuned 
with the same learning rate of the generator. A batch size 
of 128 was set, where 64 “fake” samples from the genera-
tor and the same number of “real” samples from 15,955 
compounds were used to update the discriminator. The 
training process was stopped when the mean loss value 
of the discriminator did not decrease for one epoch after 
stabilization (see Additional file 1: Fig. S1c).

In this study, the Adam optimizer was used to train all 
models due to its stable and robust performance [78].

Details of docking
The solvent molecules of the receptor (PDB code: 5FDP) 
were initially removed, and then the Protein Preparation 
Wizard Workflow provided in Maestro [79] was used to 
prepare the 3D structure. The pH was set to 7.0 ± 2.0, and 
other parameters were set as the default. After that, the 
grid file was generated by the Receptor Grid Generation 
Module [79]. The 3D coordinates of ligands were gener-
ated using LigPrep [80], and their protonation states were 
determined at pH 7.0 ± 2.0 with Epik [81]. In addition, 
ligand structures were desalted, and their tautomers were 
generated as the default. The resulting conformations were 
docked to the receptor structure using Glide SP mode [82], 
and other parameters were set as the default. The confor-
mation with the lowest docking score was kept for analysis.

Results and discussion
The comparison between existing molecular filtering 
approaches and MolFilterGAN on benchmark datasets
In this study, we first tested the scoring distribution of 
some frequently used molecular filtering approaches or 
metrics on datasets representing different chemical spaces. 

RO5 (Lipinski’s rule of five) was first evaluated as a simple 
but extensively utilized rule of thumb for estimating drug-
likeness of compounds by medicinal chemists. As shown 
in Fig. 3a, b and Additional file 1: Fig. S2a–c, most com-
pounds from bioactive chemical space or drug chemical 
space meet Lipinski’s rule of five, however, metrics of RO5 
are completely insufficient to prioritize bioactive/drug 
chemical space (ChEMBL, CNPD and Cortellis-Drugs) 
from generative chemical space (GA, VAE-ZINC-S and 
LSTM-ZINC) or general accessible chemical space (ZINC 
and REAL), which means high false positive rate might 
occur when RO5 is applied for triaging drug candidates.

Next, we evaluated the most widely used Quantitative 
Estimate of drug-likeness score (QED [51]) and synthetic 
accessibility score (SA [52]) in the field of generative 
models. As shown in Fig. 3c, d, QED and SA cannot pri-
oritize bioactive/drug chemical space either. In contrast, 
a misleading trend can be observed for QED, where 
ZINC and REAL were assigned more favorable scores 
than ChEMBL, CNPD and Cortellis-Drugs, suggesting 
that it might be counterproductive when they are applied 
on some commercial libraries for hit screening.

Then, a robust baseline BNN (AE + GCNN), which 
integrated the predictions of AE and GCNN by retain-
ing predictions with lower uncertainty, was evaluated 
on the benchmark set (the prediction results of AE and 
GCNN each on the benchmark datasets are shown in 
Additional file 1: Fig. S3). As shown in Fig. 3e, the BNN 
(AE + GCNN) can distinguish the drug chemical space 
from the general accessible chemical space, and the score 
distribution of the bioactive library (ChEMBL, CNPD) is 
also in line with expectations. As benchmarked by Brown 
et  al. in their GuacaMol evaluation framework, a lower 
proportion of high-quality molecules was found among 
the samples generated by generative models than those 
sampled from ChEMBL [46]. Unfortunately, the BNN 
(AE + GCNN) incorrectly assigned high scores for the 
generative libraries GA and VAE-ZINC-S. The results 
above indicate that BNN (AE + GCNN) may be helpful in 
HTS (High throughput screening) or vHTS (virtual high 
throughput screening), however, high false positive rate 
might also occur when it is applied to generative models. 
Some more metrics were also tested  (FSP3 and MCE-18, 
details see Additional file  1: Fig. S2), but none of these 
frequently used metrics is appropriate for filtering mol-
ecules from deep generative models.

The established MolFilterGAN was then evaluated 
on the same benchmark datasets representing differ-
ent chemical spaces. As shown in Fig.  3f, MolFilter-
GAN can distinguish drug or bioactive molecules from 
those of the general accessible chemical space well. In 
addition, MolFilterGAN assigns lower scores to VAE-
ZINC-S or GA than ChEMBL, which is consistent with 
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the results from Brown et  al. [46]. The above results 
indicate that quite a lot of low-quality generative com-
pounds can be filtered out by MolFilterGAN and the 
problem of high false positive rate can be alleviated to 
a large extent. Moreover, we investigated the impact of 
the percentage of labeled data in positive class (Addi-
tional file 1: Fig. S4 and Additional file 1: Table S4), the 
results show that the percentage of labeled data in posi-
tive class can affect MolFilterGAN’s ability to discrimi-
nate positive samples but has little effect on its ability 
to discriminate negative samples. Overall, the results 
suggest that MolFilterGAN shows better performance 
in discriminating compounds from different sources 
than existing molecular filtering approaches, therefore 
it is more adapted to evaluate the molecules benefit 
from the robust discrimination capability.

The progressively augmented sampling method makes 
MolFilterGAN stand out
Both BNN (AE + GCNN) and MolFilterGAN try to 
train a model to discriminate molecules from different 
resources. As discussed by Beker et  al. [60], the BNN 
(AE + GCNN) is limited by the unbalanced representa-
tion of different molecular types/features in the negative 
dataset, and we argue that the improvement in MolFilter-
GAN might be attributed to progressive augmentation 
training, which makes the negative data more diverse and 
balanced.

A simulation study was carried out to compare these 
two sampling methods. In detail, 1000 molecules were 
randomly sampled from ZINC and the process was 
repeated five times (named from Z1 to Z5) while the 
same amount of molecules were separately sampled from 

Fig. 3 Score distribution of a logP (oil/water partition coefficient), b MW (molecular weight), c QED (0–1, larger, better), d SA (1–10, smaller, 
better), e BNN (AE + GCNN) (0–1, larger, better) and f logits of MolFilterGAN (0–1, larger, better) on benchmark sets. Molecules sampled from GA 
(graph-based genetic algorithm) [64], VAE-ZINC-S (GENTRL trained with filtered ZINC database [29]) and LSTM-ZINC (LSTM model trained with ZINC 
database [7]) are used to represent the generative chemical space. Molecules from ZINC [65] and REAL [66] are used to represent the accessible 
chemical space. Molecules from ChEMBL [67] and CNPD [68] are used to represent the bioactive chemical space. Molecules from Cortellis-Drugs are 
used to represent the drug chemical space
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the generator at five stages (G1, G101, G201, G301 and 
G401). As shown in Fig.  4a, MolFilterGAN scoring dis-
tributions of five sets of molecules repeatedly sampled 
ZINC are about the same, which means that diversity 
and representativeness of compounds in the negative set 
cannot be guaranteed by just including more ZINC data. 
Meanwhile, we found that MolFilterGAN scoring distri-
bution of molecules sampled from the initial generator 
(step = 1) is also similar to those sampled from ZINC 
(see Fig.  4b), which indicates that molecules sampled 
from the generator at this stage are “ZINC-like”. How-
ever, as the training progresses, MolFilterGAN scores 
of molecules from the generator improves, suggesting 
that gradually fine-tuned generator is able to produce 
diverse “fake” samples that are increasingly confusing 
(more challenging) to the discriminator. To illustrate, we 
sampled 10,000 molecules from ZINC and the generator 
at different stages and placed them together in a t-SNE 
plot. As shown in Fig. 4c, molecules from the generators 
spread in a wider space compared with those from ZINC, 
which means that negative data produced by augmented 

generators are more diverse than that randomly sampled 
from ZINC.

In addition, we also analyzed the distributions of 
molecular weight, clogP as well as the number of 
hydrogen bond acceptors, hydrogen bond donors and 
rotatable bonds for molecules sampled by above two 
methods. As shown in Fig. 4d, e and Additional file 1: 
Fig. S5a–c, molecular weights of ZINC molecules 
are densely distributed between 200 and 450, and the 
molecular weight between 250 and 400 accounted for 
more than 90% of all molecules. In contrast, molecular 
weights of the molecules generated by MolFilterGAN 
are widely distributed between 50 and 800. Similarly, 
the distributions of clogP as well as the number of 
hydrogen bond acceptors, hydrogen bond donors and 
rotatable bonds also supports that the negative data for 
training MolFilterGAN are more diverse and balanced. 
A given method’s accuracy may vary quite perceptibly 
depending on the choice of the negative set of “non-
drugs” [60].

Fig. 4 The comparison between a random sampling method and the progressively augmented sampling method. a MolFilterGAN scoring 
distribution for molecules repeatedly sampled from ZINC. b MolFilterGAN scoring distribution for molecules sampled from the generators at 
different training stages. Five compound sets (Z1, Z2, Z3, Z4, Z5) were constructed by repeatedly sampling 1000 molecules from ZINC while the 
other five sets (G1, G101, G201, G301 and G401) were constructed by sampling compounds from the generators at steps 1, step 101, step 201, step 
301 and step 401 respectively. c T-SNE plot, d molecular weight distribution and e clogP distribution for 10,000 molecules sampled by above two 
methods. T-SNE plot was made by DataWarrior with default settings [83]
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Here, we show that the progressively fine-tuned gen-
erator is able to produce diverse and balanced negative 
samples that are increasingly confusing to the discrimi-
nator, and consequently, the discrimination and generali-
zation capability of MolFilterGAN have been enhanced.

MolFilterGAN increases the efficiency of filtering 
generative molecules
MolFilterGAN was then examined in a real-world 
case study. Zhavoronkov et  al. developed the AI model 
GENTRL to design and screen discoidin domain recep-
tor 1 (DDR1) inhibitors [29]. Out of 30,000 compounds 
generated by GENTRL, a variety of in-house filtering 
approaches were combined with human expert visual 
inspection to triage the compounds, leading to 6 selected 
compounds for the subsequent synthesis and biological 
evaluation. Among them, 3 compounds showed  IC50 val-
ues below 1 µM, and the best compound (cpd.1) showed 
an  IC50 of 10 nM. To evaluate the practical usage of Mol-
FilterGAN, a retrospective analysis was performed using 
MolFilterGAN to filter the same set of 30,000 GENTRL-
generated compounds. Here, only MolFilterGAN and 
conventional structure-based docking were used. As 
shown in Fig. 5a, none of the 3 active compounds could 
be ranked within the top 6 by using molecular docking 
scores alone. Interestingly, when combined with MolFil-
terGAN, the “true” active cpd.1 and cpd.4 can be success-
fully retrieved within the top 6. The results suggest that 
MolFilterGAN can be used as a useful filtering approach 
for de novo designed molecules. By only using MolFil-
terGAN and docking, the complicated procedure used 
by Zhavoronkov et  al. can be significantly simplified, as 
shown in Fig. 5b, c.

MolFilterGAN is useful in triaging bioactive molecules 
across a wide range of target types
In addition to the case study of DDR1, MolFilterGAN 
was further evaluated on LIT-PCBA [84], which is a 
high-throughput screening (HTS) bioassay dataset where 
all active and inactive ligands relating to each target were 
experimentally confirmed. Since the number of active 
compounds of each target varies greatly, only those tar-
gets containing more than 100 active compounds were 
included, resulting in a test set with 8 targets (VDR, ESR-
ANTAGO, FEN1, GBA, KAT2A, PKM2, MAPK1 and 
ALDH1). For each target, the ligand set was preprocessed 
as described in data preprocessing section before evalu-
ation. Here QED and SA were used for comparison. In 
addition, a random prediction model was also bench-
marked, where a value of 0 or 1 from a uniform distri-
bution was assigned to each compound. The area under 
the receiver operating characteristic curve (AUC) score 
was used to evaluate their performance. Intriguingly, as 

shown in Fig. 6a–i, the AUC scores of QED and SA were 
lower than those of a random guess on almost all target 
sets, which means that QED and SA might deteriorate 
hit triage when they are applied as filtering metrics. Con-
sidering that SA is an indicator of synthesis difficulty, it 
may cause a higher proportion of simple molecules to be 
retained when filtering chemical library (see Additional 
file 1: Fig. S6), thereby reducing the positive rate (i.e. the 
possibility of molecules possessing biological activity). 
This may explain why SA is even inferior to random pick-
ing. QED is an indicator of drug-likeness of compounds 
and has been widely used in studies of deep genera-
tive models. However, QED was designed to distinguish 
orally administered drugs from known protein ligands 
(deposited in the Protein Data Bank) [51]. It means that 
bioactive compounds or ligands with properties similar 
to those in the Protein Data Bank are considered nega-
tives, and hence cannot be prioritized. All these results 
suggest that QED and SA should be used with caution 
especially when our goal is to find hits during early stage 
of drug discovery, as these metrics tend to reduce the 
enrichment of hits. In contrast, the AUC scores of Mol-
FilterGAN were obviously higher than those of the ran-
dom method on six target sets and were comparable to 
those of the random method on two target sets, suggest-
ing that MolFilterGAN is indeed useful in triaging active 
hits across a wide range of target types. Here, the goal of 
model training is not to discriminate between active and 
inactive compounds on a specific target, so it is expected 
that the model did not show greater than random guess-
ing ability on a specific target in this test. However, as 
shown in Fig. 6, we observed that MolFilterGAN shows 
a certain discrimination ability on most targets. It is an 
intriguing result. Since there have been many reports 
that discriminators from GANs can be used as success-
ful feature extractors [61, 62, 85, 86], our results suggest 
that MolFilterGAN may have learned the hidden features 
encoding whether chemicals have structures related to 
fortuitous biological activity. Moreover, considering that 
none of the molecular target information was included 
when training MolFilterGAN, there is few restrictions 
for the utilization of MolFilterGAN and it is possible to 
incorporate other orthogonal methods such as docking 
and binding affinity prediction models.

Conclusions
Currently, AI-based molecular design methods, such 
as deep generative models, have demonstrated power-
ful chemical space exploration capability and promis-
ing prospects for new drug discovery. However, these 
methods face a major challenge in prioritizing molecular 
structures with potential for subsequent drug develop-
ment from the extremely huge chemical space. In this 
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study, we first analyzed the effectiveness of some fre-
quently used molecular filtering metrics (RO5, QED, SA 
and et al.), and strong AI-based models [AE, GCNN and 
BNN (AE + GCNN)] on datasets representing the gen-
erative chemical space, accessible chemical space, bio-
active space and drug space. The results show that none 
of these methods is adequate to distinguish molecules 
from different sources. Second, based on a generative 

adversarial network, we developed a novel molecular fil-
tering approach, MolFilterGAN, to address this issue. By 
expanding the size of the drug-like set and using a pro-
gressive augmentation strategy, MolFilterGAN has been 
fine-tuned to distinguish between bioactive/drug mol-
ecules and those from the generative chemical space. 
Third, we examined the validity of MolFilterGAN by a 
retrospective analysis of AI-designed DDR1 inhibitors. 

Fig. 5 Comparison of the molecular filtering procedures and results on the same set of 30,000 GENTRL-generated compounds reported by 
Zhavoronkov et al. a Venn diagram showing the top-ranked six compounds selected by Zhavoronkov et al. (light green square), docking (light blue 
square), and MolFilterGAN + docking (light gold square). Flowcharts comparing the molecular filtering procedures of b Zhavoronkov et al. and c 
MolFilterGAN + docking
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The results show that MolFilterGAN can significantly 
increase the efficiency in picking out bioactive com-
pounds from generative molecules. Finally, we evalu-
ated MolFilterGAN on an HTS bioassay dataset where 
all active and inactive ligands were experimentally con-
firmed. The results suggest that MolFilterGAN is help-
ful in triaging bioactive compounds across a wide range 
of target types. Overall, MolFilterGAN can be used as 
a practical tool for triaging potential molecules thereby 
improving the hit rate of active compounds, and the 
research is expected to accelerate drug discovery by fil-
tering the AI-generated molecules and reduce the heavy 

reliance on manual evaluation by medicinal chemists in 
current real-world applications.

Abbreviations
ADMET  Absorption, distribution, metabolism, excretion and toxicity
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AI  Artificial intelligence
AR  Aromatic or heteroaromatic ring
AUC   Area under the receiver operating characteristic curve
BNNs  Bayesian neural networks
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CNN  Convolutional neural network
CNPD  Chinese Natural Product Database
DDR1  Discoidin domain receptor 1

Fig. 6 Evaluation of MolFilterGAN, QED and SA on HTS dataset LIT-PCBA. AUC scores for a random guess (RAND), QED, SA and MolFilterGAN (MFG) 
on 8 target sets, including, a VDR, b ESR-ANTAGO, c FEN1, d GBA, e KAT2A, f PKM2, g MAPK1, and h ALDH1. The random method, QED, SA and 
MolFilterGAN are represented as solid black, green, blue and salmon lines respectively. i AUC score distribution for the random guess, QED, SA 
and MolFilterGAN on all target sets. For the random guess, a value of 0 or 1 from a uniform distribution was assigned for each molecule. *p < 0.05, 
**p < 0.01, ***p < 0.001, and ns not significant. A statistical analysis was performed by one-tailed Student’s t-test
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