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Abstract 

Retrosynthesis is an important task in organic chemistry. Recently, numerous data‑driven approaches have achieved 
promising results in this task. However, in practice, these data‑driven methods might lead to sub‑optimal outcomes 
by making predictions based on the training data distribution, a phenomenon we refer as frequency bias. For exam‑
ple, in template‑based approaches, low‑ranked predictions are typically generated by less common templates with 
low confidence scores which might be too low to be comparable, and it is observed that recorded reactants can 
be among these low‑ranked predictions. In this work, we introduce RetroRanker, a ranking model built upon graph 
neural networks, designed to mitigate the frequency bias in predictions of existing retrosynthesis models through 
re‑ranking. RetroRanker incorporates potential reaction changes of each set of predicted reactants in obtaining the 
given product to lower the rank of chemically unreasonable predictions. The predicted re‑ranked results on publicly 
available retrosynthesis benchmarks demonstrate that we can achieve improvement on most state‑of‑the‑art models 
with RetroRanker. Our preliminary studies also indicate that RetroRanker can enhance the performance of multi‑step 
retrosynthesis.
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Introduction
Organic chemistry is a discipline primarily focused on 
studying and creating organic compounds. Retrosyn-
thesis, which aims to propose a list of candidate reac-
tants that likely lead to a given product, is a critical task 
in organic chemistry. Early approaches in retrosynthesis 
planning typically involve manually analyzing the target 
molecule and subsequently dividing it into synthesizable 

precursors step by step, which requires extensive chemis-
try knowledge [1]. The first computer program designed 
to assist in proposing the retrosynthesis plan was devel-
oped in the 1960s  [2, 3], primarily addressing the prob-
lem of recommending and building synthetic templates. 
As the number of chemical reaction rules increases, 
it becomes costly to construct a reasonably effective 
expert system with comprehensive organic chemistry 
knowledge [4–6].

With recent rapid advancements in artificial intelli-
gence, numerous fully data-driven approaches have dem-
onstrated promising results in single-step retrosynthesis 
prediction, which can be broadly classified into two cat-
egories: template-based and template-free. For template-
based approaches, they first extract reaction templates 
from a reaction database and then employ a rank-
ing or classification model to select potentially correct 
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templates based on molecular similarity for a given prod-
uct  [7–9]. For template-free approaches, chemical reac-
tions are typically represented as SMILES (Simplified 
Molecular-Input Line-Entry System) strings  [10, 11], 
and the retrosynthesis task is formulated as a text gen-
eration problem using encoder-decoder architec-
tures  [12–15]. In this context, the encoder encodes the 
molecular sequence [6, 13, 16] or graph [17, 18] as high 
dimensional vectors, and the decoder predicts the output 
sequence based on the contextual representation from 
the encoder [5].

In both template-based and template-free approaches, 
the output are a list of ranked reactants. The ranking 
in template-based approaches primarily relies on the 
template score and reactant score  [8], whereas in tem-
plate-free approaches, it depends on the probability of 
generating the sequence of reactants’ SMILES during 
beam search [6, 13, 16]. Data-driven approaches may pro-
duce sub-optimal results by making predictions based on 
the training data distribution, which we interpret as fre-
quency bias. In template-based approaches, top-ranked 
predictions are typically generated by common tem-
plates with relatively high scores, while low-ranked ones 
are produced by less common templates with low confi-
dence scores, which might be too low to be comparable. 
Similarly, template-free methods tend to decode output 
SMILES with common “decoding patterns” [19], i.e., the 
model attempts to apply frequent synthesis patterns (on 
SMILES) learned from the training data to a given prod-
uct. It has been observed that the recorded reactants in 
patent pathways can be among those low-ranked predic-
tions. We present two examples in Fig. 1.

In Fig.  1(a), the product molecule has multiple func-
tional groups that can be synthesized during reactions. 
It can be obtained by cleaving the ester group, the amide 
group, or the secondary amine of the given product, with 
each of these sites corresponding to multiple possible 
precursors. The top-1 result1 of the standard template-
based approach  [20] is a common amidation reaction 
that combines the carboxylic acid group with a  methyl-
amine. The top-ranked predictions may have selectivity 
issues (a new amide could be formed at the other car-
boxyl group in the  top-1  prediction), and the reactants 
might also be challenging to synthesize (1 and 2). The 
recorded set of reactants is ranked at 8, which is more 
feasible when compared to other predictions. However, 
its ranking score is comparable to its neighbors (7 and 9) 
and is significantly lower than the top-ranked ones. For 
template-free models, we display the predictions and 

the logarithmic probabilities of generating the SMILES 
strings by Augmented Transformer [14] in Fig. 1(b). The 
top-1 prediction will not react, and the reactants in the 
second prediction may be difficult to obtain. It appears 
that the model is attempting to apply frequent synthe-
sis patterns at SMILES level to the given product. The 
recorded set of reactants is at a low rank, and its rank-
ing score is comparable to its neighbors, which is also sig-
nificantly lower than top-ranked ones. The two examples 
demonstrate that ranking predictions by those relatively 
low confidence scores can be unreliable and may pose 
problems from a chemical perspective.

In order to filter out chemically unreasonable predic-
tions, Segler et al. [21] trained a classifier to evaluate the 
feasibility of each prediction reacting to the given prod-
uct based on molecular fingerprints. Schwaller et al. [13] 
built a round-trip prediction using the forward syn-
thesis model, which might also have the frequency bias 
as previously mentioned. Sun et al.  [22] tackled the ret-
rosynthesis problem from an energy-based perspective 
and trained a dual model to combine forward (reaction 
prediction) and backward (retrosynthesis) directions to 
rank the predicted reactants. Lin et al.  [23] proposed to 
re-rank the predictions using energy-based models to 
improve the performance of several single-step mod-
els. Their ranking models are mainly based on molecule 
graphs [23] or fingerprints [21], which do not incorporate 
potential reaction changes.

In this paper, we propose RetroRanker, a method 
designed to mitigate the frequency bias of existing data-
driven approaches by re-ranking predictions with low 
confidence scores. RetroRanker is built upon graph neu-
ral networks (GNN) leveraging chemical features from 
both molecular graphs and potential reactions. These 
chemical features are independent of the aforementioned 
text generation or extracted templates, offering comple-
mentary information beyond the existing frequency bias. 
We demonstrate improvements over existing state-of-
the-art models on both USPTO-50K  [24] and USPTO-
full  [25, 26] datasets. Our preliminary studies also 
indicate that improved performance can be achieved in 
multi-step retrosynthesis using RetroRanker.

Methods
Given a product molecule and a list of corresponding 
predictions, where each entry is a set of reactants, Ret-
roRanker aims to re-rank the low-ranked entries, which 
usually have low confidence scores. Following learning-
to-rank techniques  [27] in information retrieval and 
machine learning, we designed RetroRanker as a pairwise 
ranking model, with the training objective that recorded 
reactants have a higher score than non-recorded predic-
tions (Fig. 2).

1 We use the open-source tool AiZynthFinder, https:// github. com/ Molec 
ularAI/ aizyn thfin der.

https://github.com/MolecularAI/aizynthfinder
https://github.com/MolecularAI/aizynthfinder
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(a)

(b)

Fig. 1 Predictions of template‑based (a) and template‑free (b) approaches. The bar charts show the probabilities and logarithmic probabilities 
of each prediction. We show top‑ranked predictions and predictions around the recorded reactants. The ranking scores of low‑ranked results are 
comparable, which are all significantly lower than that of top‑ranked entries
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Each prediction from the single-step retrosynthe-
sis model is paired with the product as input to Retro-
Ranker, which consists of a reaction encoder and a scorer 
module. The reaction encoder takes the reactants and 
product’s molecular features and their potential reaction 
changes as input, which are further updated with GNN 
backbones. The re-ranking score is calculated based on 
the high-dimensional representation from GNN. The 
final ranking is based on the original rank and the score 
of RetroRanker, which will be introduced later.

Reaction encoder
In the context of this paper, the term “reaction” primar-
ily refers to the potential reaction occurring between the 
predicted reactants and the given product. It is important 
to note that some reactants may not undergo a reaction 
in the real world. RetroRanker can be viewed as a tool for 
ranking the feasibility of each set of predicted reactants 
in achieving the given product during potential reactions. 
Recently, various methods have been developed to learn 
representations of chemical reactions. DRFP  [28] takes 
SMILES strings of reactants and product as input, and 
calculates reaction fingerprints based on the differences 
between circular substructures of reactants and prod-
ucts. Tavakoli et al. [29] proposed rxn-hypergraph, which 
utilizes hypernodes over molecular graphs to learn repre-
sentations at reaction level.

The reaction encoder in RetroRanker encodes both 
molecular features and potential reaction change fea-
tures. All features are designed at atom or bond level on 

the molecular graphs of reactants and product, as illus-
trated in Fig. 3.

Following  [30], the molecular features include typical 
atom and bond features, such as atom degree and bond 
order. Potential reaction changes correspond to spe-
cific areas in molecular graphs of the reactants and the 
product. The reaction sites vary among different reac-
tant-product pairs. These potential reaction changes are 
critical because chemically unreasonable changes indi-
cate that the reaction will not occur in the real world. 
Thus, we incorporate reaction changes as input features 
in the  reaction encoder. For each reactant-product pair, 
we first map the atoms in reactants and product with 
RXNMapper [31], and locate the reaction site in the reac-
tants and the changed area in the product based on the 
mapped atoms. We extract reaction change features, such 
as the number of reacted atoms in the neighborhood and 
the number of atoms in leaving groups during the poten-
tial reaction. Note that for different reactant-product 
pairs, the reaction change features on the product mole-
cule are different, even though the molecular features are 
the same. Please refer to the Additional file 1: Section 1 
for a complete list of molecular features and reaction 
change features used in this paper. With both molecular 
features and reaction change features, we believe subtle 
differences among different reactant-product pairs are 
captured by the reaction encoder.

With atom- and bond-level features, it is natural to 
learn representations of reactions leveraging GNN 
architectures, which have shown promising results in 
tasks where 2D molecular graphs serve as the input [32, 

Fig. 2 Overview of re‑ranking with RetroRanker. Each prediction from the single‑step retrosynthesis model is paired with the product as input to 
RetroRanker (the potential reaction changes are highlighted in dashed boxes). RetroRanker consists of a reaction encoder and a scorer module. The 
reaction encoder takes the molecular features and the potential reaction changes as input, which are further updated with GNN backbones. The 
re‑ranking score is calculated based on the high‑dimensional representation from GNN
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33]. We choose two representative GNN architectures 
as backbones: AttentiveFP  [33] and Graphormer  [34]. 
It is worth noting that other variants of GNNs should 
also work here. AttentiveFP  [33] is designed to cap-
ture chemically non-local effects (e.g., conjugated 
effect) among nodes on 2D molecular graphs because, 
in vanilla message-passing neural networks (MPNN), 
the interactions between nodes decay rapidly as the 
distance increases. AttentiveFP is capable of capturing 
long-range interactions through the graph attention 
mechanism  [35], and it achieves promising perfor-
mance in predicting molecular properties  [33, 36]. As 
Transformers have achieved great success in sequence-
based input tasks in natural language processing, many 
researchers have tried to extend the architecture to 
handle graph data [37, 38]. Graphormer [34] introduces 
centrality encoding and spatial encoding to model 
graph structures in Transformers. The centrality encod-
ing adds the degree of each node as input features to 

encode the node importance in the graph. The spatial 
encoding encodes the spatial relation between every 
two nodes based on the shortest path. Graphormer 
achieves state-of-the-art performance on various graph 
prediction tasks  [34, 39]. Please refer to the original 
papers  [33, 34] for details about AttentiveFP and Gra-
phormer. In the reaction encoder, we use two inde-
pendent GNN backbones to learn representations of 
reactants and product, respectively. The reaction repre-
sentation is obtained by concatenating the GNN output 
of the reactants and the product. The scorer in Retro-
Ranker is a neural network of two linear layers with the 
reaction representation as input. We construct train-
ing data based on predictions of the given single-step 
retrosynthesis model, with each prediction paired with 
the product as input to RetroRanker. During the train-
ing process, the objective is to ensure that recorded 
reactants have a higher score than non-recorded pre-
dictions. We use the label smoothed cross-entropy loss 

Fig. 3 Overview of the reaction encoder. The encoder takes the predicted reactants and the given product as input. The features of each atom 
are composed of its molecule‑level features (e.g., atom degree, bond order) and reaction change features (e.g., number of reacted atoms in the 
neighborhood). After featurization, the reactant molecular graph and the product molecular graph are updated by GNN backbones, respectively. 
The reaction representation is obtained by concatenating the GNN output of the reactant and product
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to train the model. During inference, we use the output 
scores from RetroRanker for re-ranking.

Re‑ranking strategies
Our goal is to mitigate the frequency bias in predictions 
of existing data-driven models, i.e., we aim to re-rank 
those low-ranked predictions with relatively low confi-
dence scores. Therefore, the requirement for re-ranking 
is that top-ranked predictions should be given more 
respect. This motivates us to design the following two re-
ranking strategies.

• Strategy 1 (S1): We lower the rankings of predictions 
whose RetroRanker scores are among the bottom of 
ratio p, re-ordering them based on ranking scores 
from RetroRanker. The rankings of top k predictions 
are preserved. For example, p = 70% , k = 5 means 
that we lower the rankings of predictions whose 
RetroRanker scores are among the bottom 70% , i.e., 
these predictions are moved to the end of the ranked 
list following the ranking scores by RetroRanker, and 
the rankings of top 5 predictions remain unchanged.

• Strategy 2 (S2): The final ranking is based on the sum 
of the original ranking and the new ranking calcu-
lated by S1. Compared to S1, The original ranking 
weighs more in this strategy.

For both strategies S1 and S2, the original rankings are 
taken into account for the final ranking. Both two strate-
gies are flexible, as we can tune the parameters p and k 
(denoted as S1(p, k) or S2(p, k)) to achieve improved per-
formance under certain requirements. The parameters 
of p and k can be empirically set or can be tuned with 
grid search. Please refer to Additional file  1: Section  4 
for more discussions on the two parameters, we also give 
several illustrative examples to illustrate the re-ranking 
process of the two strategies in Additional file 1: Table S2.

Data and settings
The USPTO dataset is a well-adopted reaction dataset 
for single-step retrosynthesis prediction, which contains 
organic reactions extracted from US Patent and Trade-
mark Office (USPTO)-granted patents  [5, 25, 41]. For 
reactions extracted from patents [25] with multiple prod-
ucts, Dai et al. [26] separated these reactions so that each 
product is a separate entry containing the same reactants. 
After removing duplicates and reactions with incor-
rect atom mappings, approximately 1  M unique reac-
tions remained, which were further divided into train/
valid/test sets containing approximately 800k/100k/100k 
reactions, respectively. This is the USPTO-full data-
set. The USPTO-50k  [24] dataset is a subset contain-
ing about 50k reactions, which are classified into 10 

predefined categories. The sizes of train/valid/test are 
40, 008/5, 001/5, 007 [26]. We first compare RetroRanker 
with a energy-based re-ranking model, rxn-ebm  [23]. 
Note that RetroRanker encodes both molecular features 
and reaction change features, while only molecular fea-
tures are utilized in rxn-ebm. In contrast, RetroRanker 
incorporates additional reaction change features at the 
atom- and bond-level, which we believe contribute to the 
improved performance. RetroRanker is a pairwise rank-
ing model, while rxn-ebm is an energy-based ranking 
model. Training an energy-based model requires inte-
grating the energy over all possible predictions to obtain 
meaningful probability distributions while training pair-
wise ranking models is more flexible. Lin et al. [23] sim-
plified the training process of energy-based models by 
using up to 50 predictions. We compare RetroRanker 
with rxn-ebm over RetroXpert  [40] and GLN  [26] on 
the USPTO-50k dataset. RetroXpert  [40] is a template-
free method combining both graph-level and sequence-
level features; it first predicts reaction centers and then 
generates synthons, which are further used to predict the 
reactants. GLN [26], or Graph Logic Network, is a tem-
plate-based method that ranks reaction templates based 
on graph neural networks. For fair comparisons with 
rxn-ebm, we build the pairs to train RetroRanker based 
on the predictions released by [23].

Augmented Transformer  [14] (on USPTO-full) and 
R-SMILES  [15] (on USPTO-50k and USPTO-full) are 
state-of-the-art retrosynthesis approaches based on 
Transformers  [12]. We further test RetroRanker on 
Augmented Transformer and R-SMILES. Augmented 
Transformer [14] introduces data augmentation to the 
original Transformer model [12]. R-SMILES [15] intro-
duces root-aligned SMILES of the reactants and prod-
uct to Augmented Transformer, significantly reducing 
the overall edit distance between the product and 
reactants SMILES, making it easier to learn the chemi-
cal knowledge for reactions. For R-SMILES, we use 
the released data and model  2 to obtain predictions. 
On USPTO-50k, the train/val/test data are augmented 
by 20 times, and on USPTO-full are augmented by 5 
times. We obtain predictions by feeding the model 
with train, valid, and test data, respectively. For a given 
product molecule, each predicted entry is a set of 
reactants; we pair it with the product and obtain the 
mapped atoms using RXNMapper  [31]. The training 
and valid data to train RetroRanker are constructed 
based on model predictions on the training and valid 
split from the original dataset. Both the training and 
valid data will be a collection of tuples, where each 

2 https:// github. com/ otori- bird/ retro synth esis.

https://github.com/otori-bird/retrosynthesis
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tuple consists of a pair of recorded reactants-product 
and a pair of non-recorded reactants-product. The 
training objective of RetroRanker is to ensure that 
the recorded reactants have a higher score than non-
recorded predictions. During inference on the test 
data, we pair each prediction with the given product 
to obtain the RetroRanker score, which will be used 
during re-ranking. We train Augmented Transformer 
model from scratch with a large-sized model, which 
achieves improved results over the original paper [14]. 
For Augmented Transformer on USPTO-full, follow-
ing [14], we add 5 augmented random SMILES to train 
the model; RetroRanker on Augmented Transformer is 
trained in a similar way as on R-SMILES. Please refer 
to Additional file 1: Section 2 for parameter settings of 
Augmented Transformer.

Table  1 shows the baselines and datasets used to 
evaluate RetroRanker. We choose various types of 
baselines mainly to demonstrate that RetroRanker 
is a generic re-ranking plugin that can be potentially 
applied to most single-step retrosynthesis models.

Results and discussion
In this section, we first compare RetroRanker with rxn-
ebm  [23], an energy-based re-ranking model primar-
ily focused on molecular features, over RetroXpert  [40] 
and GLN  [26] on the USPTO-50k dataset. We further 
demonstrate that our approach can achieve improved 
performance over the recent state-of-the-art method, 
R-SMILES, on the USPTO-50k dataset. Additionally, we 
show that RetroRanker can enhance the performance 
of Augmented Transformer and R-SMILES on the more 
challenging USPTO-full dataset. It is important to note 
that our re-ranking strategy is flexible, and we report the 
overall best results in this section. More results under 
different re-ranking strategies can be found in Additional 
file  1: Tables S3 and S4. We also integrate RetroRanker 
with Retro* [42] to demonstrate the effectiveness of Ret-
roRanker in multi-step retrosynthesis planning.

Results on USPTO‑50k
Table 2 shows the top-k accuracy of rxn-ebm  [23] and 
RetroRanker over RetroXpert and GLN. We train our 
model using the same single-step proposals as in rxn-
ebm, and the averaged results are reported. RetroRanker 

Table 1 Single‑step retrosynthesis models and datasets

∗ Duplicated reactions are further removed, the sizes of train/valid/test are slightly changed to 39713/4989/5005 [23]
† AT is for Augmented Transformer

Model Dataset Pairs Model type

Template‑based Template‑free Graph Sequence

RetroXpert  [40] USPTO‑50k* 1.9 million � � �

GLN  [26] USPTO‑50k* 1.8 million � �

R‑SMILES [15] USPTO‑50k 1.2 million � �

AT [14]† USPTO‑full 12.3 million � �

R‑SMILES [15] USPTO‑full 16.3 million � �

Table 2 Top‑k accuracy of rxn-ebm and RetroRanker over RetroXpert and GLN

∗ The re-ranking strategy is S1(90%, 0) and the GNN backbone is AttentiveFP
† The re-ranking strategy is S2(90%, 0) and the GNN backbone is AttentiveFP
‡ Numbers in parentheses denote the improvement over rxn-ebm. The RetroRanker models are trained based on the same single-step proposals with rxn-ebm

Rank RetroXpert GLN

Original rxn-ebm RetroRanker* Original rxn-ebm RetroRanker†

Top‑1 45.8 ± 0.3 42.7 ± 0.3 47.3 ± 0.7 (+4.6‡) 51.7 ± 0.3 52.3 ± 0.0 52.1 ± 0.5 (‑0.2)

Top‑3 59.2 ± 0.3 62.0 ± 0.2 64.4 ± 0.7 (+2.4) 67.8 ± 0.4 74.9 ± 0.3 74.9 ± 0.2 (+0.0)

Top‑5 63.0 ± 0.6 67.6 ± 0.1 70.3 ± 0.2 (+2.7) 75.1 ± 0.3 82.0 ± 0.2 82.7 ± 0.2 (+0.7)

Top‑10 66.9 ± 0.3 73.0 ± 0.3 75.7 ± 0.2 (+2.7) 83.2 ± 0.1 88.0 ± 0.0 89.3 ± 0.2 (+1.3)

Top‑20 69.9 ± 0.6 75.9 ± 0.1 77.1 ± 0.3 (+1.2) 88.9 ± 0.1 91.4 ± 0.1 92.1 ± 0.2 (+0.7)

Top‑50 73.0 ± 0.7 77.3 ± 0.2 77.3 ± 0.3 (+0.0) 92.4 ± 0.1 93.0 ± 0.1 93.2 ± 0.1 (+0.2)
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significantly enhances the accuracy of both RetroXpert 
and GLN, demonstrating the effectiveness of leverag-
ing RetroRanker for re-ranking. On RetroXpert, Retro-
Ranker outperforms rxn-ebm by a large margin, while 
on GLN, RetroRanker is comparable to or slightly better 
than rxn-ebm. It is worth noting that on RetroXpert, we 
use re-ranking strategy S1, while on GLN , we use strat-
egy S2. The ranking strategy S2 shows more respect for 
the original ranking. Thus, S1 is more suitable for Ret-
roXpert, as the original performance is relatively low.

On the proposals by RetroXpert, we performed addi-
tional experiments to verify the effectiveness of our 
model and features. Under backbones like WLN [43] or 
weave  [44], the re-ranking performance is comparable 
with AttentiveFP. However, in the ablation study, the per-
formance dropped significantly when removing reaction 
change features. These results can be found in Additional 
file 1: Table S5. Based on the results above, the improve-
ment over rxn-ebm can be primarily attributed to the 
introduction of both molecular features and reaction 
change features, which are critical for learning represen-
tations of chemical reactions.

Table  3 shows the accuracy when re-ranking predic-
tions of R-SMILES, with other methods included as ref-
erences. Improving the results of R-SMILES is more 
challenging compared to RetroXpert or GLN. R-SMILES 
has relatively high accuracies in top-ranked predictions, 
e.g., the top 5 accuracy is 86.1% , while RetroRanker aims 
to mitigate the frequency bias by re-ranking those low-
ranked predictions. This leaves us less room for improve-
ment. As shown in Table 3, RetroRanker can still achieve 
improved performance over R-SMILES, e.g., when using 
the re-ranking strategy S2(100%, 2) and Graphormer as 
the GNN backbone, the top 5 accuracy is improved by 
nearly 1%.

On USPTO-50k, we define the final accuracy as the 
accuracy at top-50 for the baseline model. R-SMILES 
achieves its final accuracy of 94.3% at position 44, i.e., 
the performance cannot be further improved until the 
50th prediction. After re-ranking with RetroRanker using 
re-ranking strategy S2(100%, 2) and AttentiveFP as the 
GNN backbone, we achieve the final accuracy at posi-
tion 37. This implies that if R-SMILES with RetroRanker 
is applied in multi-step retrosynthesis planning, the total 
search space at each step can be directly reduced by 
approximately 16% . It is important to note that the overall 
search space grows exponentially as the number of steps 
increases. This indicates that RetroRanker can poten-
tially reduce the search space in multi-step retrosynthesis 
planning.

To further understand the improvement of Retro-
Ranker, we perform a deep analysis based on reaction 
types. The reactions in USPTO-50k are classified into 10 
categories [6], and their details can be found in Additional 
file 1: Table S1. We compare the re-ranked results mainly 
using accuracies at top-3 and top-5 for each reaction type 
because for re-ranking strategy S2(100%, 2) , the top-2 
predictions remain unchanged. RetroRanker achieves 
significant improvement in two reaction types: C-C bond 
formation ( +1.8% at top-3 and +2.5% at top-5) and Het-
erocycle formation ( +2.2% at top-3 and +10.0% at top-
5). The full results of RetroRanker on the 10 categories 
are shown in Additional file 1: Table S1. We consider the 
broken or newly constructed bonds as changed bonds, 
which usually reveal the changes during reactions. The 
average numbers of changed bonds for C-C bond forma-
tion and Heterocycle formation are 1.7 and 3.5, respec-
tively, which are the two largest among all reaction types. 
Note that the average number of changed bonds on the 
whole USPTO-50k is 1.1. Thus, reactions of the two types 
have a greater degree of change than other reactions on 

Table 3 Top‑k accuracy(%) after re‑ranking over R‑SMILES on USPTO‑50k

Bolded values represent the best top-k accuracies
∗ The re-ranking strategy is S2(100%, 2) , the GNN backbone is AttentiveFP
† The re-ranking strategy is S2(100%, 2) , the GNN backbone is Graphormer

Models Top‑1 Top‑3 Top‑5 Top‑10 Top‑20

RetroSim 37.3 54.7 63.3 74.1 82.0

RetroXpert 50.4 61.1 62.3 63.4 63.9

GLN 52.5 69.0 75.6 83.7 89.0

LocalRetro 53.4 77.5 85.9 92.4 ‑

AT 53.5 – 81.0 85.7 ‑

R‑SMILES 56.0 79.1 86.1 91.0 93.5

R‑SMILES+RetroRanker∗ 56.0 79.6 (+0.5) 86.6 (+0.5) 91.8 (+0.8) 93.8 (+0.3)

R‑SMILES+RetroRanker† 56.0 79.5 (+0.4) 86.9 (+0.8) 91.5 (+0.5) 94.0 (+0.5)
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average. C-C bond formation is usually a condensation 
or a coupling reaction during which multiple bonds are 
broken. The formation of heterocycles, in general, con-
tains condensation reactions and other related processes 
such as tautomerization or aromatization, which are less 
common reactions in the dataset. The recorded reactants 
of the two types are less frequent and therefore become 
low-ranked predictions. The results also demonstrate 
that RetroRanker can effectively re-rank the predictions 
based on chemical features to mitigate the frequency bias 
in predictions of existing data-driven models.

Results on USPTO‑full
Table 4 shows the accuracy when applying RetroRanker 
to Augmented Transformer and R-SMILES on the more 
challenging USPTO-full dataset. The results of both Aug-
mented Transformer and R-SMILES are re-ranked using 
strategy S2(100%, 0) , i.e., the final ranking is based on the 
sum of the original ranking and the ranking based on Ret-
roRanker scores, which can be considered as an ensem-
bled ranking of the original model and RetroRanker. With 
RetroRanker, we achieve improvements over both Aug-
mented Transformer and R-SMILES, and the improve-
ment of RetroRanker over Augmented Transformer is 
more significant than over R-SMILES because the over-
all accuracy of top-ranked predictions of R-SMILES is 
relatively high. When no top-ranked predictions are pre-
served, we achieve improvement on top-1 accuracy for 
both Augmented Transformer and R-SMILES. In par-
ticular, for Augmented Transformer, the top-1 accuracy is 
improved by 1.2%. Similar to USPTO-50k, RetroRanker 
can also help reduce the search space when applying Ret-
roRanker to single-step models trained on USPTO-full to 
multi-step planning. For example, for Augmented Trans-
former, the accuracies of re-ranked predictions on top-6, 
7, and 8 are comparable to or higher than the accuracies 

of the original top-8, 9, and 10. Please refer to Additional 
file 1: Table S4 for detailed comparisons.

For Augmented Transformer, compared to Retro-
Ranker trained on its own predictions, the improvement 
is more significant when re-ranking with RetroRanker 
trained using the R-SMILES predictions. This improve-
ment suggests that RetroRanker trained on R-SMILES 
could potentially be used as a generic ranking plugin to 
enhance the performance of other retrosynthesis models. 
Another scenario of leveraging RetroRanker is that, when 
developing new retrosynthesis models, RetroRanker on 
R-SMILES can be considered as a pretrained ranking 
model. To achieve further improved performance of the 
newly designed retrosynthesis model, we could generate 
its predictions on the training data (or a small amount 
of the training data) to finetune the pretrained ranking 
model. In this way, we could achieve improved perfor-
mance more efficiently with the pretrain and finetune 
paradigm, which has been widely adopted in natural lan-
guage processing. Please refer to Additional file  1: Sec-
tion 6 for more results on this.

To understand the improvement of RetroRanker, we 
perform an analysis on product molecules for which 
rankings of recorded reactants are changed. For predic-
tions of Augmented Transformer on USPTO-full, after 
re-ranking with S2(100%, 0) , the rankings of recorded 
reactants for 13,  088 product molecules are improved, 
and more details of changing in rankings can be found in 
the Additional file 1: Section 7. For the entire USPTO-full 
dataset, the average number of changed bonds between 
recorded reactants and the given product is 1.4, while 
on the improved subset it is 1.7. This is intrinsically 
related to the frequency bias, because in template-free 
approaches, a reaction with more changed bonds means 
a greater degree of change on SMILES strings, and these 
decoding patterns are less frequent. Thus, the recorded 
reactants of these reactions become low-ranked predic-
tions. RetroRanker is designed primarily based on chemi-
cal features, which can be considered as a complement to 
translation-based approaches. The results indicate that 
RetroRanker can improve the retrosynthesis performance 
on product molecules that are synthesized through less 
common reactions.

Results on multi‑step retrosynthesis planning
Designing multi-step retrosynthesis routes is always 
challenging as it requires an algorithm to select fea-
sible reactants at each step. It is important to note that 
the search space grows exponentially as the number of 
steps increases. Numerous research studies attempted 
to reduce the search space by leveraging search algo-
rithms such as Monte Carlo Tree Search  [45] or A* 
algorithm [42].

Table 4 Top‑k accuracy (%) after re‑ranking on USPTO‑full

∗ The re-ranking strategy is S2(100%, 0) , the GNN backbone is Graphormer, and 
the model is trained based on the predictions of AT
† The re-ranking strategy is S2(100%, 0) , the GNN backbone is Graphormer, and 
the model is trained based on the predictions of R-SMILES

Models Top‑1 Top‑3 Top‑5 Top‑10

RetroSim 32.8 – – 74.1

GLN 39.3 – – 63.7

LocalRetro 39.1 53.3 58.4 63.7

AT 47.6 62.4 66.7 70.7

AT+RetroRanker∗ 48.0 (+0.4) 64.1 (+1.7) 68.5 (+1.8) 71.7 (+1.0)

AT+RetroRanker† 48.8 (+1.2) 64.7 (+2.3) 68.8 (+2.1) 71.7 (+1.0)

R‑SMILES 48.9 66.5 71.8 76.8

R‑SMILES+RetroRanker† 49.0 (+0.1) 67.2 (+0.7) 72.6 (+0.8) 77.3 (+0.5)
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RetroRanker has the potential to reduce search spaces 
through re-ranking. We conducted preliminary studies 
on leveraging RetroRanker in Retro* [42], a neural-guided 
A* search algorithm for multi-step retrosynthesis plan-
ning. The test set of Retro* is constructed from molecules 
on USPTO dataset that can be synthesized using eMol-
ecules3 via existing reactions in the dataset. The authors 
trained a template-based model  [46] as the single-step 
retrosynthesis tool in route planning and further refined 
the routes to ensure each reaction is covered within top-
50 predictions by the single-step model. The test set 
contains 190 molecules as the targets of multi-step ret-
rosynthesis route planning and is evaluated primarily 
using the planning efficiency metric, i.e., the success rate 
within 500 calls to the single-step model.

We apply RetroRanker trained based on predictions of 
Augmented Transformer on USPTO-full to Retro*. As 
it is difficult to fully integrate RetroRanker with Retro* 
during each search step, we only use RetroRanker to 
re-rank predictions for the first step. After re-ranking,4 
the success rate on the Retro* test set improves by 2.1% , 
and the average number of calls to the single-step model 
decreases from 156.58  [42] to 153.26. It is worth not-
ing that likelihoods of low-ranked predictions from the 
single-step model are comparable, while it is critical to 
select chemically feasible reactants for multi-step route 
planning. We present two cases in Fig. 4 to demonstrate 
the improved performance achieved with RetroRanker. 
We leave the deep integration of RetroRanker in multi-
step retrosynthesis planning as our future work, which 
requires the joint optimization of the search algorithm 
and the re-ranking model [47].

In multi-step retrosynthesis planning, the predicted 
reactants should be easier to synthesize from the build-
ing blocks than the given product. The synthesis route 
should not contain chemically unfeasible reactants, e.g., 
reactions that will not occur at all. The two cases shown 
in Fig. 4 are failed cases in Retro* using the original sin-
gle-step model, while correct synthesis routes can be 
obtained after re-ranking with RetroRanker only in the 
first step.

In the first product molecule (#13 in the original data-
set), multiple functional groups are presented, and the 
single-step model generates up to 29 predictions for the 
initial step. The scores for low-ranked reactants are quite 
low. Many of these low-ranked reactants are chemically 
unfeasible; for example, the 10th and the 13th reactants 
attempt to remove the Br atom from the aromatic ring. 
These reactants are re-ranked to lower positions with 

relatively low scores from RetroRanker. The 5th potential 
reaction tries to change the protecting group on the phe-
nol hydroxyl, which does not aid in further dividing the 
molecule into synthesizable building blocks. Occasion-
ally, it is necessary to add protecting groups before con-
densation or coupling reactions, but it is not the case for 
this molecule; thus, the 5th prediction is also re-ranked 
to a lower position. The RetroRanker score of the 15th 
prediction is relatively high, representing an addition-
elimination reaction where a  methylamine attacks the 
carbonyl group to form an imine. This reaction is chemi-
cally feasible and simplifies the target molecule, resulting 
in its re-ranking to a higher position.

For the second case (#125), RetroRanker eliminates 
chemically unreactive predictions. The 5th predicted 
reactants include a molecule similar to the product mol-
ecule and a strong base diisopropylamide (usually gener-
ated from the lithium diisopropylamide/LDA). However, 
no reaction occurs under the given substrate and condi-
tion, indicating that the reaction template for this pre-
diction may be incorrectly applied. Similarly, the 6th 
reactants contain a molecule that has one fewer carbonyl 
group than the product molecule, which is unfeasible. 
These incorrect reactants are common in data-driven 
retrosynthesis approaches. The templates only capture 
the local environment for reactions, which is insufficient. 
RetroRanker encodes molecular features and reaction 
change features with GNNs, allowing for better repre-
sentation of the reaction and the capability to filter out 
chemically unfeasible predictions. In this case, the two 
incorrect reactants receive relatively low scores and are 
re-ranked to the 11th and 13th positions, respectively. 
We also present a possible but impractical reactant. The 
10th prediction is an esterification reaction on the acyl 
chloride; however, synthesizing the acyl chloride is more 
challenging than the product molecule, rendering this 
step unsuitable for a retrosynthesis route. The substitu-
tion reaction at the 11th position is re-ranked to a higher 
position, as it attempts to synthesize the allyl group out-
side the ring, significantly simplifying the structure.

Through these cases, we can observe that RetroRanker 
effectively re-ranks predictions, assigning chemically rea-
sonable scores. After re-ranking, the search algorithm 
is more likely to identify the correct reactants, thereby 
boosting the performance in multi-step retrosynthesis 
planning.

Conclusion
We propose RetroRanker, a re-ranking model built upon 
graph neural networks, to mitigate frequency bias in the 
predictions of state-of-the-art data-driven approaches 
in single-step retrosynthesis prediction. We incorporate 
both molecular features and reaction change features 

3 http:// downl oads. emole cules. com/ free/ 2019- 11- 01/.
4 The re-ranking strategy is S1(80%, 4).

http://downloads.emolecules.com/free/2019-11-01/
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Fig. 4 Improved predictions over Retro* leveraging RetroRanker. The recorded reactants in synthesis routes are highlighted in green. The 
RetroRanker scores and the re‑ranked positions are shown under each prediction
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as chemical features into GNNs, and achieve improved 
performance over existing approaches by re-ranking 
low-ranked predictions. Our preliminary study also dem-
onstrates that RetroRanker can reduce the search space 
in multi-step retrosynthesis. As RetroRanker can be flex-
ibly applied to most existing single-step retrosynthesis 
models, we believe it holds great potential for widespread 
use in future retrosynthesis analysis studies.
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