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Abstract 

Poly ADP-ribose polymerase 1 (PARP1) is an attractive therapeutic target for cancer treatment. Machine-learning scor‑
ing functions constitute a promising approach to discovering novel PARP1 inhibitors. Cutting-edge PARP1-specific 
machine-learning scoring functions were investigated using semi-synthetic training data from docking activity-
labelled molecules: known PARP1 inhibitors, hard-to-discriminate decoys property-matched to them with generative 
graph neural networks and confirmed inactives. We further made test sets harder by including only molecules dissimi‑
lar to those in the training set. Comprehensive analysis of these datasets using five supervised learning algorithms, 
and protein–ligand fingerprints extracted from docking poses and ligand only features revealed one highly predictive 
scoring function. This is the PARP1-specific support vector machine-based regressor, when employing PLEC finger‑
prints, which achieved a high Normalized Enrichment Factor at the top 1% on the hardest test set (NEF1% = 0.588, 
median of 10 repetitions), and was more predictive than any other investigated scoring function, especially the classi‑
cal scoring function employed as baseline.

Key points 

•	 A new scoring tool based on machine-learning was developed to predict PARP1 inhibitors for potential cancer 
treatment.

•	 The majority of  PARP1-specific machine-learning models performed better than  generic and  classical scoring 
functions.

•	 Augmenting the training set with ligand-only Morgan fingerprint features generally resulted in better performing 
models, but not for the best models where no further improvement was observed.

•	 Employing protein-ligand-extracted fingerprints as molecular descriptors led to the best-performing and most-
efficient model for predicting PARP1 inhibitors.

•	 Deep learning performed poorly on this target in comparison with the simpler ML models.
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Introduction
PARP1 plays an important role in regulating the micro-
homology-mediated end joining (MMEJ) pathway that 
repairs DNA damage [1, 2]. PARP1 is a member of the 
diphtheria toxin-like ADP-ribosyltransferases family 
that is catalytically activated in response to various types 
of DNA damage [1, 2]. The full-length PARP1 protein 
is modular and composed of six domains (Fig.  1) [3]. 
In the N-terminus, the first three domains are zinc fin-
ger domains (Zn1, Zn2 and Zn3), followed by a BRCT 
(BRCA1 C-terminus domain) and a WGR (Trp-Gly-Arg) 
domain. At the C-terminus, there is a catalytic domain 
(CAT), which houses a helical domain (HD) and an 
ADP-ribosyl transferase (ART) domain. These domains 
allosterically communicate with each other in order 
to facilitate DNA damage repair. The three zinc finger 
domains at the N-terminus recognize both DNA single- 
and double-strand breaks, thereby causing conformation 
changes in the CAT domain that allow NAD+ to be rec-
ognized at the activation site en route to activating the 
enzyme. Activated PARP1 catalyzes the poly ADP-ribo-
sylation of susceptible protein substrates using NAD+ 
[4, 5]. Furthermore, PARP1 has also been found to play 
a role in transcriptional regulation, chromosome stabil-
ity, cell division, differentiation, apoptosis, and has been 
considered the most actively-pursued target for treating 
some cancers [6]. Breast Cancer Type 1 Susceptibility 
Protein (BRCA1) and Breast Cancer Type 2 Susceptibility 
Protein (BRCA2) have a crucial function in DNA damage 
repair via homologous recombination pathway. In cells 
with deleterious BRCA mutations, the MMEJ pathway 
becomes critical for the repair of DNA damage. As such, 
inhibition of PARP1 by NAD+ competitive inhibitors can 
prevent the repair of DNA damage in BRCA-deficient 
cancer cells, leading to cancer cell apoptosis [5, 7]. PARP1 
is thus a validated therapeutic target for ovarian and/or 
breast cancer with deleterious BRCA mutations [8].

Small-molecule PARP1 inhibitors have become the 
standard of care for women with metastatic ovarian 
cancer and breast cancer harbouring the single or dou-
ble BRCA1 and BRCA2 mutations [9, 10]. These inhibi-
tors can be categorized into three major types according 
to their discovery timelines [11]. First-generation PARP1 
inhibitors are benzamide derivatives (e.g. 3-aminoben-
zamide) and close analogues of nicotinamide-related 
compounds [12]. They were discovered via empirical 
drug design, given that benzamide was the first to show 
an inhibitory activity against PARP1 [12], and nicotina-
mide, a by-product of the PARP1 enzymatic reaction, is 
a weak PARP1 inhibitor [11]. Second-generation inhibi-
tors contain a quinoline core and were first reported in 
1991 [11, 13, 14]. These PARP1 inhibitors were shown 
to slow down the repair of DNA damage [14], and 

were later optimized to enhance their potency using 
structure-based drug design. This helped improve the 
understanding of PARP1’s active site and facilitated the 
synthesis of highly potent novel inhibitors (around 50 
times more potent than 3-aminobenzamide) [15]. Third-
generation inhibitors were the first to show that PARP1 
inhibitors can exert their activity when used alone in 
BRCA-mutated cancer patients. Widely regarded as a 
major breakthrough in PARP1-related cancer research 
[16, 17], this discovery represented a paradigm shift in 
cancer treatment that triggered an intense period of 
activity centered on the development of PARP1 inhibi-
tors, leading to the approval of olaparib, rucaparib, 
niraparib, and talazoparib by the FDA [11]. All FDA-
approved PARP1 inhibitors contain the benzamide scaf-
fold [18]. These drugs do not work in combination with 
first-line chemotherapy, due to additive hematological 
toxicity [19]. Frequent delivery of olaparib, niraparib and 
rucaparib may result in toxic accumulation in normal tis-
sues due to poor absorption and distribution [20]. Other 
drawbacks have also been recorded, e.g., non-selective 
PARP1 activity, low solubility and low permeability, as 
in the case of olaparib [21]. Therefore, the discovery of 
novel PARP1 inhibitors is still highly sought after [19, 22].

Structure-based (SB) virtual screening (VS) has been 
shown to be useful in hit identification for a range of 
therapeutic targets [23]. The available atomic-resolution 
structures of PARP1 and the affinities/activities of their 
cognate ligands support the use of docking to predict 
both protein-ligand binding affinity and the plausible 
binding modes of an inhibitor to the CAT of PARP1. 
SBVS relies primarily on molecular docking, which 
entails two main challenges. In the first step, the cor-
rect pose of the molecule must be sampled (sampling), 
and the second step involves ranking and selection of the 
correct pose (scoring). Many methods exist for rapidly 
exploring the conformational space of a small molecule 
[24, 25]. The latter step is used to guide the sampling pro-
cess as well as to rank the sampled poses. Putative pose 
scores can be used to direct the sampling strategy, as 
implemented in AutoDock Vina [26], or to analyze the 
fitness of an entire population, as in AutoDock4 [27]. In 
any scenario, an accurate scoring function is essential for 
ranking and selecting samples.

As non-linear relationships between the chosen pro-
tein-ligand features and the binding affinity/bioactivity 
of the ligand should not be neglected, there is a need 
for methods that will take such complex relationships 
into account. Machine learning (ML)-powered dock-
ing does take into account nonlinearities [28, 29] and 
has discovered molecules with affinity for a range of 
targets [30–36]. Docked molecules are ranked accord-
ing to their predicted affinity/energy of interactions 
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Fig. 1.  PARP1 and its inhibitors. A Cartoon illustration of the PARP1 protein. Catalytic domain co-crystalized with ligand (Olaparib) was based 
on the protein structure of PARP1 (PDB code 7KK4). B Structures of several PARP1 inhibitors from three generations (Olaparib is the third-generation 
inhibitor on the right). Benzamide scaffold common to all FDA-approved PARP1 inhibitors shown in yellow
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for the target using a scoring function (SF). The more 
accurate SF predictions are, the more tightly-bound 
compounds should be placed at the top of the post-
screening hit list. Although useful in some cases, hit 
ranking by classical SFs, which rely on linear assump-
tions is generally quite limited [37]. A target-specific 
ML SF is a computational model employed to rescore 
docked poses that effectively leverages the data avail-
able for the investigated target [38].

Here, we will investigate SB models to predict PARP1 
inhibitory activity via target-specific ML SFs aiming at 
identifying the most potent molecules. We will report 
a retrospective SBVS study with training data derived 
from different experimental settings. We will compare 
the models based on data sets relevant to PARP1 and 
three off-the-shelf generic SFs including Smina, CNN-
Score, and SCORCH. In this paper, we will also dis-
cuss the impact of different modelling choices on VS 
performance on PARP1 as well as the benefit of using 
regression-based ML SFs trained on inactive-enriched 
data for SBVS.

Results
Experimental design
The experimental design of this study is illustrated in 
Fig. 2. A data set of compounds tested against PARP1 and 
their inhibitory activity (potency/affinity) values were 
obtained from ChEMBL (Version 29), consisting of 5097 
bioactivity data points, which belong to different cat-
egories including half maximal inhibitory concentrations 
(IC50s) from biochemical or cellular assays (biochemical/
cellular IC50s), or binding affinity (Kd values) from bio-
physical assays and others. Compounds capable of inhib-
iting PARP1 at a concentration lower than or equal to 1 
µM were classified as actives, while those having an active 
concentration above 1 µM were labeled as inactives. 
The threshold of 1 µM is a usual choice in the literature 
[39–42], consistent with what can be found in bioactivity 
databases (e.g., in PubChem, nearly 90% of PARP1 inhibi-
tors have a potency value better than 1 µM, whereas all 
inactive-labeled compounds cannot inhibit this target at 
a concentration lower than this threshold [43]). Chemical 
structures of PARP1 inhibitors were processed according 
to a previously described data curation workflow [44], 

Fig. 2  The methodological workflow of this study. Experimental data on PARP1 were retrieved from ChEMBL and distributed to the training set 
and the test set. The training set contains 1565 molecules with biochemical (but not cellular) IC50s, while the test set comprises 93 molecules 
with cellular IC50s in addition to their in vitro biochemical potency. The threshold to distinguish true actives from true inactives in both data sets 
is 1 µM. 3350 decoys property-matched to 67 test actives were generated by DeepCoy, and form part of the test set. All ligands were docked 
into their receptor (PDB ID 7KK4) by Smina, after which either PLEC or GRID features were extracted from each docked complex. Ligand-only 
Morgan fingerprints (512 bits, radius 2) were also computed. These features were then used as input for ML model training and testing, using five 
supervised learning algorithms: RF, SVM, XGB, ANN, DNN (hyperparameters were tuned using Bayesian optimization). The VS performance of all 
algorithms was evaluated in terms of EF1% and NEF1% and visualized as precision-recall curves. Three off-the-shelf generic SFs (Smina, CNN-Score, 
SCORCH) were evaluated on the same test set as the ML SFs for comparison. A dissimilar test set was also created by keeping only test molecules 
whose Tanimoto similarity scores to any training instances (Morgan fingerprints, 2048 bits, radius 2) were lower than 0.70, on which all SFs were 
also evaluated
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which starts by the removal of metal ions and salts, the 
normalization of chemotypes and the standardization of 
tautomers using the JChem Standardizer. Four PARP1 
structures in the Protein Data Bank (PDB) having good 
resolutions (1.50–2.10 Å) were considered (PDB IDs: 
7AAC, 7KK5, 7KK4, 6VKK), and 7KK4 was selected for 
this study. Olaparib (CHEMBL521686), a clinical PARP1 
inhibitor, was co-crystallized in 7KK4 structure. The data 
set was divided into two subsets: the training set and the 
test set.

Activity records were specifically filtered to keep only 
values supplied with a standard relation type as “=” (cer-
tain data) or “>” (classified as inactives). Molecules with 
the sought cellular activity are important in that many 
molecules with on-target activity are discarded because 
of not being cell active and hence data is partitioned 
accordingly. The training set consists of 957 molecules 
with biochemical (but not cellular) IC50s (certain data) 
not exceeding 1 µM, classified as actives, and 608 com-
pounds whose active concentrations were above 1 µM, 
classified as inactives. By contrast, the test set comprises 
93 molecules with cellular IC50s (certain data) in addition 
to their in  vitro biochemical potencies, 67 of which are 
actives (cellular IC50s ≤ 1 µM). DeepCoy next used these 
test actives as templates to generate property-matched 
decoys (decoy-to-active ratio = 1:50), outputting 3350 
decoys which form part of the test set. This is a graph-
generative neural network that creates new decoys in 
an iterative and bond-by-bond manner, such that they 
are chemically similar but structurally dissimilar to their 
input active. An additional difficulty posed by this PARP1 
benchmark is that test inactives (decoys) are related to 
their test actives in a different way from training inactives 
to training actives. This avoids performance overestima-
tion caused by decoy bias, which occurs when training 
and test inactives are both property-matched to training 
and test actives, respectively [45]. Moreover, the test set 
was made even more challenging for SBVS, by remov-
ing all test molecules whose Tanimoto similarity scores 
to any training instances (Morgan fingerprints, 2048 bits, 
radius 2) were equal to 0.70 or above. This dissimilar test 
set aims at examining the discriminatory power of each 
ML SF on molecules structurally dissimilar to its training 
data. We first introduced this more demanding evalua-
tion of SFs in a recent study [39].

Five supervised learning algorithms, each with a binary 
classification variant and a regression variant, were used 
to develop our ML SFs: random forest (RF) [46], extreme 
gradient boosting (XGB) [47], support vector machine 
(SVM) [48], artificial neural network (ANN) [49], and 
deep neural network (DNN) [50]. These algorithms have 
been employed in many studies to train high-performing 

ML models for in silico screening in drug discovery, and 
were featured in a recently-published protocol [39]. Here, 
they were trained using different featurization schemes, 
including protein-ligand complex-based features (pro-
tein-ligand extended connectivity fingerprints, PLEC; or 
3D grid-based features, GRID) [39, 51], and ligand-only 
Morgan fingerprints (512 bits, radius 2) [52], which are 
commonly used for encoding structural information car-
ried in a target-ligand complex or a ligand structure in 
3D space. The VS performance of all PARP1-specific ML 
SFs on the full and dissimilar test set versions was then 
compared to that achieved with off-the-shelf generic 
ones (Smina, SCORCH and CNN-Score) [53–55]. We 
plotted the precision-recall (PR) curve, which shows the 
trade-off between the precision and recall values at dif-
ferent cutoffs of the ranked list of test molecules, for each 
SF. We also computed the enrichment factor in the top 
1%-ranked test molecules (EF1%) and the normalized 
EF1% (NEF1%), two useful metrics for evaluating how 
well each SF retrieves true actives among its top-ranked 
compounds (early enrichment), which is an important 
aspect in VS, notably when the SF is used in prospective 
settings [39, 56]. The EF1% is computed as the hit rate in 
the top 1%-ranked molecules divided by that across the 
whole library of compounds, indicating how many times 
more actives are retrieved among the top 1%-ranked mol-
ecules by a certain SF than by random guessing [39]. The 
NEF1%, on the other hand, is the EF1% recorded for an 
SF divided by the maximal EF1% it can possibly achieve 
on a given test set. This metric permits comparing the 
VS performance of multiple SFs on the same test set, and 
also across test sets (notably those of different sizes) [39, 
57].

Applying existing generic SFs
Smina, a fork of Autodock Vina (version 1.1.2), was used 
to dock all molecules in this study (https://​sourc​eforge.​
net/​proje​cts/​smina/​files/). The native SF of Smina is a 
linear regression model trained on the CSAR-NRC HiQ 
2010 data set. This SF is used to predict the binding free 
energy of a docked pose [53]. The utilization of custom-
ized interaction terms, together with high-quality train-
ing data sets, improves its predictive performance over 
the original AutoDock Vina SF. The native SFs from ten 
other docking programs including Dock4, DockIt, FlexX, 
Flo+, Fred, Glide, Gold, LigandFit, MOEDock and MVP 
were less successful than Smina at distinguishing active 
compounds from pharmacologically relevant decoys. 
These data contain a large number of closely related com-
pounds for which experimental affinities have been meas-
ured using a standard protocol for a diverse set of targets 
including serine/threonine protein kinase, trypsin-like 

https://sourceforge.net/projects/smina/files/
https://sourceforge.net/projects/smina/files/
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serine protease, bacterial type II topoisomerase, meth-
ionyl tRNA synthetase, hepatitis C RNA polymerase, 
polypeptide deformylase from E. coli, polypeptide defor-
mylase from S. Pneumococcus, and peroxisome prolifera-
tor-activated receptor [25].

Several studies reported that rescoring the docked 
poses of the screened molecules resulted in better VS 
performance than relying solely on classical SFs used by 
docking programs [58]. For this purpose, two other off-
the-shelf generic SFs were evaluated in this study. First, 
CNN-Score takes comprehensive 3D representations of 
a protein-ligand interaction as input and uses deep ML 
techniques to rescore docked poses [59]. It is an ensem-
ble of five convolutional neural network (CNN) models 
of deep learning architecture (up to 20 hidden network 
layers). Of these models, the ‘dense’ and ‘default2017’ 
CNN models were trained using a large proportion 
of assumed inactives, in particular property-matched 
decoys extracted from the Database of Useful Decoys: 
Enhanced (DUD-E) [60], containing 22,645 positive 
instances and 1,407,145 negative instances. It should be 
noted that PARP1 is one of the 102 targets of DUD-E, and 
only 18 molecules used to train CNN-Score’s underlying 
models (out of 3443, i.e. 0.52%) were included in the test 
set: this represents a tiny overlap between the training 
set and the test set that would unlikely result in overes-
timating the screening power of this SF. CNN-Score was 
shown to perform better than two classical SFs (Smina 
and Vinardo) on LIT-PCBA [61]. Second, SCORCH con-
sists of three ML approaches (gradient-boosted decision 
trees, feedforward neural networks and wide-and-deep 
neural networks). These ML SFs were trained on the 
PDBbind data set (refined set of 4854 complexes), the 
Binding MOAD data set (non-redundant set of 3187 
complexes), the Iridium data set (highly trustworthy set 
of 120 complexes), and property-matched decoys gener-
ated from the DeepCoy generator with a decoy-to-active 
ratio of 10. SCORCH was proven better-performing than 
widely used SFs in both VS and pose prediction scenarios 
on independent data sets [54].

The VS performance of these three generic SFs is 
reported in Additional file  1: Table  S1, with a graphical 
illustration in Fig.  3. Among them, the ML-based ones 
(CNN-Score and SCORCH) outperformed the classi-
cal SF (Smina), in terms of (N)EF1%. This suggests that 
deep learning and consensus models with largely availa-
ble training data could help increase the screening power 
of SFs in SBVS campaigns. The advantage of generic SFs 
is that they can be used off-the-shelf to rescore docked 
poses issued by any docking tool in a relatively fast and 
simple manner [60].

Developing PARP1‑specific models for SBVS using protein–
ligand features
A way to improve VS performance further is to develop 
target-specific SFs [62]. The lack of confounding factors 
due to molecular recognition differences from other tar-
gets (e.g. those related to protein structures) means that a 
more accurate features-activity relationship can often be 
determined [63]. Target-specific SFs trained with a rela-
tively low proportion of inactive molecules tended not 
to perform well on SBVS [64–66], and so it was avoided 
here. Furthermore, such SFs are designed to find active 
compounds in a chemolibrary containing a much higher 
percentage of inactives. This prompted us to evaluate the 
PARP1-specific ML SFs using a test set enriched with 
inactives. Their VS performance was summarized in 
Additional file 1: Table S1 and depicted in Fig. 3.

Target-specific classification and regression models 
built on PLEC fingerprints were found to be more pre-
dictive than those based on GRID features: the areas 
under the PR curves (PR-AUCs) of the SFs issued from 
the former type of features are generally larger than those 
produced by the latter type (Fig. 3). The PLEC-based SF 
employing SVM as learning algorithm performed bet-
ter than any other classifier and all three generic SFs on 
the test set. Indeed, this model retrieved over 32 times 
more true actives among the top 1%-ranked molecules 
than what would be expected at random. In the case of 
regression-based SFs, the majority of those trained with 
PLEC features gave better performance than their clas-
sification counterparts (except for RF regressor which 
performed worse than the RF classifier). In particular, the 
combination of PLEC and SVM, as featurization scheme 
and learning algorithm, once again led to the best perfor-
mance: EF1% = 38.8, NEF1% = 0.764. This further dem-
onstrates the importance of using quantitative bioactivity 
data points to train PARP1-specific ML SFs.

Investigating the impact of combining features on training 
and testing ML SFs
We would like to investigate whether the use of ligand-
only features alongside protein-ligand ones would result 
in better ML model training. For this purpose, Morgan 
fingerprint features, also known as extended-connectivity 
fingerprints ECFP4 [67], were employed. These features 
have frequently been used in binding affinity prediction 
among various topological parameters [68]. By combin-
ing them with protein-ligand features (PLEC, as it led to 
better-performing models than GRID), additional mod-
els were generated. The VS performance of these mod-
els is indicated in Additional file 1: Table S2 and depicted 
in Fig.  4. It is observed that the best-performing ML 
SF trained on the combination of Morgan fingerprints 
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and PLEC features is again the regression-based SVM 
model, which achieves the largest PR-AUC on our test 
set (Fig.  4). This SF performed equally well as the SVM 
regressor trained on PLEC features alone, in terms of 
early enrichment of test actives (NEF1% = 0.764). As 
the latter requires generating only one set of features, 
it is more efficient and there is no benefit in introduc-
ing ligand-only features in this case. The combination 
of Morgan fingerprints and PLEC features did, however, 
result in RF, XGB, SVM classifiers and RF, XGB, ANN 
and DNN regressors with more discriminatory power 
than their counterparts trained on PLEC features only, as 
evidenced by their PR-AUCs portrayed in Fig. 4 and their 
(N)EF1% values indicated in Additional file 1: Table S2.

VS performance on the dissimilar test set
The employed test sets are hard in that each active has 
a high number of decoy molecules with highly simi-
lar physico-chemical properties. We now make it even 
harder by removing any test molecule similar to at least 
one training molecule. More concretely, a dissimilar test 
set was generated from the full test set, by discarding all 
test molecules having Tanimoto similarity scores ≥ 0.70 
to any training molecule, in terms of Morgan fingerprints 
(2048 bits, radius 2), as introduced in a recently-devel-
oped protocol [39]. This way, the remaining test data are 
dissimilar to the training set, and are expected to be more 
challenging for VS, as structural biases in the training-
test composition are reduced. Here we examined the 

Fig. 3  Precision-recall curves given by the generic and PARP1-specific SFs. To generate PARP1-specific ML SFs, docked poses of the PARP1-ligand 
complex were encoded either as GRID features (top) or as PLEC fingerprints (bottom). The resulting features were used by each of the following 
classification (left) and regression (right) learning algorithms: RF (purple, dashed line), XGB (green, dashed line), SVM (blue, dashed line), ANN 
(sienna, dashed line), and DNN (violet, dashed line). The PR curve of each target-specific ML SF is that of the training-test run giving an NEF1% equal 
(or closest) to the median NEF1% across 10 runs (chosen at random if multiple runs satisfy this criterion). The generic SFs are represented as solid 
lines in gray (Smina), light blue (CNN-Score), and salmon (SCORCH). Results are further specified in Additional file 1:Table S1
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target-specific ML SFs employing PLEC fingerprints, 
or a combination of Morgan fingerprints and PLEC fin-
gerprints as features, because these two featurization 
schemes performed the best on the full test set (Addi-
tional file 1: Tables S1, S2; Figs. 3, 4). The NEF1% values 
of all SFs, both generic and target-specific (classifiers and 
regressors) were computed for the dissimilar test set and 
compared to those obtained from the full test set (Fig. 5, 
Additional file 1: Table S3).

It can be observed in Fig. 5 that the dissimilar test set 
is indeed more challenging than the full test set: most 
SFs (22 out of 23, 95.65%) obtained a lower NEF1% 
on the dissimilar test set than on its full version (the 
only exception is SCORCH, whose performance was 
better on the dissimilar version of the test set: Addi-
tional file 1: Tables S1, S3). 16 out of 20 target-specific 
ML SFs still performed better than Smina (except for 
classification-based ANN and DNN models trained on 
either PLEC only or a combination of Morgan finger-
prints and PLEC features). Notably, the four ML SFs 
that performed the best on the full test set (the SVM-
based regressor and the SVM-based classifier using 
either PLEC only or Morgan fingerprints and PLEC) 
still gave the best performance on the dissimilar test 
set (their NEF1% was 0.588, much higher than those of 
other SFs, including generic ones). These observations 
suggest that the exclusion of test molecules structur-
ally similar to training data did not impact the rela-
tive comparisons of the investigated SFs in terms of 

VS performance. On a side note, SCORCH, a recently 
introduced generic ML SF, performed worse than eight 
PARP1-specific ML models on the dissimilar test set. 

Fig. 4  Precision-recall curves given by the PARP1-specific SFs based on combined Morgan fingerprints and PLEC features. To generate 
PARP1-specific ML SFs, docked poses of the PARP1-ligand complex were encoded as Morgan fingerprint (MF) features combined with PLEC 
fingerprints. The resulting features were used by each of the following classification (left) and regression (right) learning algorithms: RF (purple, 
dashed line), XGB (green, dashed line), SVM (blue, dashed line), ANN (sienna, dashed line), and DNN (violet, dashed line). The PR curve of each 
target-specific ML SF is that of the training-test run giving an NEF1% equal (or closest) to the median NEF1% across 10 runs (chosen at random 
if multiple runs satisfy this criterion). Further details are provided in Additional file 1: Table S2

Fig. 5  Screening performance of SFs on the full and dissimilar 
test set versions in terms of NEF1%. The SFs are: generic SFs (A), 
classification-based target-specific ML SFs (B), and regression-based 
target-specific ML SFs (C). The NEF1% of each ML SF-test 
set pair is the median obtained after 10 training-test runs 
of the corresponding learning algorithm on the respective test set. 
Random NEF1% values for the full and dissimilar test set versions are 
0.020 and 0.017, respectively
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Four of them outperformed SCORCH by retrieving 
53.85% more true actives in the top 1%, showing the 
importance of building target-specific SFs whenever 
possible (results on PARP1 suggest that it is worth 
considering SCORCH when there are few known 
inhibitors for the target).

It is also worth noting that the similarity cutoff of 
0.70 in terms of Morgan fingerprints already resulted 
in challenging test sets, as acknowledged in a previous 
study [39]. Here, the performance of the evaluated SFs 
dropped, in nearly all cases, when they were applied 
to our dissimilar test set (generated with this cutoff, 
Fig. 5). Even though the maximal similarity is allowed 
to reach 0.70 for at least one pair of training-test mol-
ecules, the average similarity across all training-test 
pairs is only 0.18. Also, results with other ligand simi-
larity cutoffs in a closely related problem showed that 
the performance for intermediate cutoffs, including 
0.70, was pretty similar [37].

The impact of computational modeling choices on SBVS 
performance
The boxplots in Fig.  6 demonstrate the distributions of 
NEF1% values obtained from the test set according to: 
(i) the nature of the SFs: classification or regression (A); 
and (ii) the featurization scheme: GRID or PLEC (B), 
PLEC alone or in combination with Morgan fingerprints 
(C). The Shapiro-Wilk test was first carried out to assess 
the normality of the NEF1% data, giving a p-value < 0.05, 
implying that the NEF1% achieved by the SFs were not 
normally distributed. Welch’s t-tests were thus used to 
examine whether any two compared groups listed above 
were significantly different from each other, in terms of 
NEF1%.

Fig. 5 shows that the performance of ML SFs on PARP1, 
despite varying widely depending on the modeling 
choices, was generally well above that of the best classi-
cal SF. This is typically the case across other targets [33, 
35, 39, 66, 69], and hence we explained that comparing 

Fig. 6  The boxplots illustrating the distributions of NEF1% values according to several computational modeling choices. These include: the nature 
of the SFs: classification or regression (A); and the featurization scheme: GRID or PLEC (B), PLEC alone or in combination with Morgan fingerprints 
(C) For each box plot, the median value is represented by a horizontal line inside the box
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a classical SF with just a few ML SFs is misleading [69]. 
For example, the best-performing SVM regressor trained 
on PLEC features strongly surpassed Smina in terms of 
discriminatory power (NEF1% of 0.764 versus 0.235, 
respectively, Additional file  1: Table  S1). Moreover, out 
of the 20 ML SFs in Figs. 5B and 5C, only the two ANN 
classifiers and a DNN classifier (15%) obtained a slightly 
worse NEF1% than Smina (0.205 versus 0.235 on the full 
test set, Additional file 1: Tables S1 and S2; 0.000 versus 
0.117 on the dissimilar test set, Table S3). In this context, 
should anyone only compare these three SFs to Smina, 
they would incorrectly conclude that ML SFs were gener-
ally not better than classical ones on this target.

Interestingly, as VS results from all featurization 
schemes were taken into account, the overall perfor-
mance of regressors was not significantly better than that 
of binary classifiers on this target (Fig.  6A). As seen in 
Fig.  6B, GRID features clearly led to poorer-performing 
models on the full test set than those trained with PLEC 
fingerprints. The models employing the latter features, 
in turn, gave significantly poorer VS performance than 
those trained with both PLEC and Morgan fingerprint 
features in combination (Fig. 6C).

The aforementioned best-performing PARP1-specific 
ML SF, simply referred to as SVM-R from this point, 
was able to retrieve 26 true active molecules in the top 
1% of the SF-ranked test set (Additional file 1: Table S4). 
To assess the diversity in chemical structures of these test 
actives, we computed their pair-wise Tanimoto similar-
ity in terms of Morgan fingerprints (2048 bits, radius 2), 
and clustered them accordingly (two compounds with 
a similarity score ≥ 0.70 are put in the same cluster, as 
proposed in a recently-developed protocol) [39]. Each of 
these test actives was also compared to 1565 molecules 
of the training set, using the same aforementioned Mor-
gan fingerprints: the similarity score to the closest (most 
similar) training molecule was recorded for each true hit. 
Results are depicted in Fig. 7.

Discussion
In this study, state-of-the-art approaches were used to 
train different ML SFs specific to screening PARP1 inhib-
itors. Five supervised learning algorithms (each with a 
binary classification variant and a regression variant) 
and a Bayesian optimization method for hyperparameter 
tuning were employed. In a non-systematic preliminary 

Fig. 7  15 clusters according to Tanimoto similarity scores of the 26 test actives retrieved by the SVM-R. For each cluster, a heatmap depicting 
the Tanimoto similarity score (Morgan fingerprints, 2048 bits, radius 2) between each retrieved true hit and its closest (most similar) training 
molecule is provided. The structures of several representative exclusive true hits are depicted in 2D (bottom row structures), along with their 
corresponding closest training molecules (top row structures). The yellow letter “I” in the heatmap area marks the only true hit whose corresponding 
closest training molecule is an inactive instance
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stage (data not shown), we analyzed four PDB structures 
of this target (PDB IDs: 7AAC, 7KK5, 7KK4 and 6VKK). 
A systematic analysis was then conducted, focusing on 
the modeling choices that gave the best performance: 
7KK4 as the PARP1 template structure, CNN-Score and 
SCORCH as the generic ML SFs, and PLEC and GRID as 
the featurization schemes. This structure-based approach 
was motivated by comprehensive comparative studies 
across targets showing that models exploiting protein-
ligand features outperform those based on ligand-only 
features [68, 70, 71].

The performance of the generic SFs (Smina, CNN-
Score, SCORCH) on this target was moderate (Smina) 
to good (CNN-Score and SCORCH), the two ML-
based ones outperformed the classical Smina alone. The 
improvement of Smina by ML rescoring has also been 
seen for many other targets [39]. Target-specific ML SFs 
are generally better than their generic counterparts [39, 
65]. Therefore, given that Singh et  al. had successfully 
used a generic classification model trained on inactive-
enriched data (chemical features and pharmacophores) 
to identify PARP1 inhibitors with sub-micromolar activ-
ity [72], this makes target-specific ML SFs even more 
promising for this target [73].

These results also provide yet another example of deep 
learning not leading to the most predictive model. This 
has also been observed with other tabular data sets [74–
76], which further supports the importance of compre-
hensive ML analysis. Employing the right featurization 
strategy for the considered target can also be critical: 
PLEC-based ML SFs were significantly better-performing 
than GRID-based ones. While the use of target-specific 
SFs normally leads to a smaller domain of applicability, 
the lack of confounding factors related to features–activ-
ity relationships may enable more accurate, and therefore 
better, screening performance. PARP1-specific ML SFs 
indeed outperformed generic ones in some cases, which 
is consistent with published reports that suggested the 
superiority of target-specific models over multi-target 
ones [77]. Thus, it is worthwhile to spend the resources 
required to build SFs tailored to PARP1, whose proce-
dure partly involves carefully curating the bioactivity data 
from several assays, as it was the case here. Often, these 
ML SFs were far more predictive than non-ML SFs [23, 
29]. Note that PLEC features, as implemented, do not 
have direct correspondences to protein–ligand interac-
tions and, hence, the resulting SFs are not amenable to 
interpreting their predictions, unlike less predictive sets 
of features [78].

Since there was a strong dependency of SFs used for 
SBVS on the fundamental physical properties of protein–
ligand complexes, we investigated methods to augment 
the training set to see whether this practice would have 

an impact on model training and VS performance. We 
employed data derived from the topological properties 
of the ligands themselves, in addition to protein–ligand 
data. We found that the addition of Morgan fingerprint 
features in the training process enhanced the VS perfor-
mance for the most PARP1-specific SFs (7 out of 10 mod-
els) and was statistically significant (Fig.  6C). However, 
using combined PLEC and Morgan fingerprint features 
led to no further increase of NEF1% for the best-per-
forming SVM regressor. Two PARP1-specific ML models 
strongly improved the VS performance offered by generic 
SFs, as they reached the EF1% of 0.764 on the full test set. 
These models still outperformed all other SFs when the 
test molecules were structurally dissimilar to the training 
molecules. Both models were based on SVM regression, 
with one utilizing exclusively complex-based PLEC fin-
gerprints. This rendered it notably more efficient than the 
other model, which incorporated a combination of PLEC 
and Morgan fingerprint features.

As observed in Fig. 7 , the true hits retrieved by SVM-R 
are quite different in terms of chemical structure: out of 
15 clusters according to Morgan fingerprints, 13 contain 
no more than two molecules each (11 of them each com-
prise a single active). A comparison of these test actives 
with all training molecules reveals that most of them 
are not similar to any molecule of the training set either: 
most Tanimoto similarity scores (Morgan fingerprints, 
2048 bits, radius 2), even to the closest (most similar) 
training instance, do not exceed 0.60 (16 out of 26, i.e., 
61.54%; this percentage is 76.92% if the similarity thresh-
old is 0.70; Additional file 1: Table S5). Among these 26 
true hits, there is one whose closest training molecule is 
an inactive instance. This suggests that the performance 
of our best-performing ML SF was not spoilt by nega-
tive nearest neighbors: it could recognize a true active 
from the test set even though the most structurally simi-
lar molecule to this active in the training data is an inac-
tive. Overall, the chemical structures of the test actives 
retrieved by SVM-R for this target are diverse and cover 
a large chemical space (even outside that of the training 
data), which is of particular interest in large-scale pro-
spective VS scenarios where practically all screened mol-
ecules will be dissimilar to those in a training set.

Conclusion
SFs for SBVS are useful to discover novel starting points 
for the drug discovery process. The development of a 
high-performing ML SF specific to the investigated tar-
get is therefore important and will continue to benefit 
from artificial intelligence innovation [79]. Here we have 
seen how much the predictive performance of these SFs 
against PARP1 varies depending on the featurization 
scheme, the size and the diversity of available data sets 
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as well as the methodology that is employed. It must be 
noted that narrow analysis will lead to SFs with subop-
timal performance. The SVM-based regressor employing 
protein–ligand (PLEC) features outperformed all other 
SFs on both versions (full and dissimilar) of the test set. 
In particular, rescoring Smina poses with PARP1-specific 
SFs boosts the retrieval of novel PARP1 inhibitors with 
respect to using Smina alone. In conclusion, owing to the 
sufficient availability of experimental and synthetic data 
instances, a powerful target-specific ML SF has been built 
and released to carry out SBVS for PARP1 inhibitors.

Materials and methods
Data
PARP1 inhibitors (n = 5097) were obtained from the 
ChEMBL database, version 29 [80]. Only molecules 
whose bioactivity values were supplied with a standard 
relation type as “=” (certain data) or “>” (classified as 
inactives) were kept. To build regression models, each 
inactive was assigned a pIC50 of 2 (we made no claim 
about the optimality of this choice). The ChemAxon’s 
Standardizer was used to standardize compounds with 
the same parameter settings as in a previous study [81]. 
The average IC50 was calculated for a compound if mul-
tiple IC50 values were available. Redundant compounds 
(i.e., same ChEMBL ID) with different bioactivity values 
were kept if the standard deviation of IC50s was lower 
than 2. Compounds with missing SMILES were removed. 
The bioactivities were annotated based on the bioas-
say types, including cellular IC50s (cell-based assays as a 
means of primary screening), biochemical IC50s (in vitro 
assays against the recombinant PARP1 catalytic domain), 
and binding affinity values (biophysical assays with the 
purified PARP1 protein).

The inhibitory activity concentrations of compounds 
were subject to negative logarithmic transformation: 
pIC50 = −log(IC50 x 10−9), all IC50 values in nanomolar. 
The training set consists of 1565 molecules with bio-
chemical (but not cellular) IC50s: 957 of them have IC50s 
≤ 1 µM (pIC50s ≥ 6), and the other 608 have IC50s > 1 
µM (pIC50s < 6). The test set is composed of 93 molecules 
annotated with cellular IC50s (in addition to in vitro bio-
chemical potency): 67 of them are actives (cellular pIC50s 
≥ 6). Note that, these 67 test actives also have biochemi-
cal potency in the active range (≥ 6); while the 26 true 
test inactives, on the other hand, were determined solely 
based on their cellular potency (< 6), regardless of their 
biochemical pIC50s, which are typically better than the 
corresponding cellular values. The test actives were sub-
sequently used as input for DeepCoy to generate prop-
erty-matched decoys with a decoy-to-active ratio of 50 
(giving 3350 decoys in total). These decoys form part of 

the test set, making it comprise 3443 molecules in total. 
The pIC50s of the molecules in the training and test sets 
fall into the same range.

A dissimilar test set was generated from the above full 
test set, composed uniquely of test molecules whose Tan-
imoto similarity (in terms of Morgan fingerprints, 2048 
bits, radius 2) to any training instances was lower than 
0.70. This smaller test population thus consists of 3426 
molecules (57 true actives, 19 true inactives, 3350 Deep-
Coy decoys). The code for computing Tanimoto similar-
ity from Morgan fingerprints and all training-test data 
are provided in our github repository, indicated in the 
“Data and materials availability” section.

Selection of protein structures
Although the full-length PARP1 structure has yet to be 
crystallized or structurally defined [82], the structural 
characterization of the protein’s interactions with its 
ligand using its isolated catalytic region appears to be 
adequate [82]. The catalytic domain of PARP1 includes 
an alpha-helical N-terminal domain and a mixed alpha/
beta C-terminal ADP-ribosyltransferase domain. The co-
crystallized ligand of the catalytic domain was shown to 
bind with the nicotinamide-binding pocket via extensive 
hydrogen bonds and π–π stacking as well as hydrophobic 
interactions [82]. Such understanding of the catalytic and 
inhibitory mechanisms of PARP1 provides an insight into 
the development of therapeutic agents targeting PARP1.

A total of 78 PARP1 experimental structures were 
available in the Protein Data Bank (PDB) [83], as of Sep-
tember 2021. Among 19 crystal structures which were 
of good resolutions (1.50–2.10 Å), we manually selected 
four PDB IDs: 7AAC, 7KK5, 7KK4, and 6VKK. Each of 
them was co-crystalized with a small molecule non-cova-
lently bound to PARP1’s catalytic domain. Of these four 
structures, Val762 was replaced with an alanine in 6VKK 
and 7AAC. Finally, the catalytic domain of 7KK4 (chain 
A) [82] was selected to represent the receptor of PARP1 
for this study.

Molecular docking
The Open Babel software [84] was used to generate 3D 
conformations for all screened compounds using the 
MMFF94 force field (--gen3d option), giving input for 
the Smina docking software [53]. On the other hand, 
the DockPrep tool from Chimera [85] was used to pre-
pare the receptor structure (35 amino acids and 4 water 
molecules) for docking. Partial charges of histidines in 
the receptor were assigned by the AM1-BBC method 
[86]. For docking with Smina [53], the search space was 
centered on the position of the co-crystallized ligand 
(olaparib of 7KK4), and the size of each axis was set at 30 
Å, giving all ligands sufficient space to rotate. Only one 



Page 13 of 17Caba et al. Journal of Cheminformatics           (2024) 16:40 	

pose having the best Smina docking score was retained 
for each molecule. It is noteworthy that Smina employs 
a stochastic conformational sampling approach to gen-
erate docking poses [87]. Therefore, in principle, there 
could be significant differences in the best docking pose 
per molecule if the docking run is repeated. In practice, 
as each docking run repeats the optimization of a mol-
ecule eight times (Smina default value for exhaustive-
ness setting), the best docking pose per molecule is, on 
average, stable across runs, and hence, a minimal impact 
on the results would be observed even when the experi-
ments are repeated. This can be easily checked using the 
released code.

Featurization
Each protein-ligand complex was encoded using one 
of the following featurization strategies. First, 3D grid-
based (GRID) features were extracted using the RDKit-
GridFeaturizer function from the deepchem Python 
package [88] with the following options: ecfp_power = 
9, splif_power = 9, voxel_width = 16.0, giving 2052 fea-
tures in total. Second, protein–ligand extended connec-
tivity (PLEC) fingerprints were extracted to describe the 
interactions between the protein and the ligand using the 
PLEC function from the ODDT (Open Drug Discovery 
Toolkit) Python package [89]. The fragment depth was 
set at 1 and 5 for the ligand (depth_ligand) and the pro-
tein (depth_protein), respectively, and the fingerprint size 
was set at 4092, as observed in a past study [51]. Third, 
Morgan fingerprint features are independent of the pro-
tein-ligand complex and its intermolecular interactions 
(this is the essential difference from GRID and PLEC fea-
tures) [52]. They were generated using GetMorganFinger-
printAsBitVect function from the RDKit Python package 
with the following options: radius = 2, n_bits = 512. As 
only the atoms of the ligand are taken into account (no 
receptor atom is involved), these descriptors are thus 
receptor-independent, and were chosen to complement 
protein-ligand descriptors for the featurization of the 
data sets prior to ML modeling.

Generic SFs
Three generic SFs were applied to score the docked poses 
of the test set, including Smina [53], CNN-Score [55] and 
SCORCH [54]. Relevant information on these three SFs 
can be found in the “Applying existing generic SFs” part 
of the “Results” section.

Construction of PARP1‑specific ML SFs
Several ML algorithms including random forest (RF) 
[46], extreme gradient boosting (XGB) [47], support vec-
tor machine (SVM) [48], artificial neural network (ANN) 

[49], and deep neural network (DNN) [50] were used for 
both classification and regression models.

RF and XGB are both ensemble models composed of 
decision trees (DTs). However, their working principles 
are different, in that the former is based on bootstrap 
aggregation, whereas the latter functions on the boost-
ing principle. Indeed, each DT in an RF is trained inde-
pendently, after which their predictions on new data are 
decided either by majority voting (in case of classifiers), 
or by averaging individual output (in case of regressors). 
XGB, on the other hand, comprises sequential DTs, i.e., 
they are trained in succession, such that the errors com-
mitted by earlier DTs are corrected or minimized by later 
ones. Another traditional ML algorithm used in this 
study is SVM, which seeks to construct a hyperplane that 
separates the data points representing all data instances, 
in a way that this plane is the furthest possible to its near-
est data point. Besides, two algorithms inspired by the 
human brain, ANN and DNN, are employed to train our 
models. Their main components are an input layer, one 
or more hidden layers (a DNN is an ANN with at least 
two hidden layers), and an output layer. Multiple neurons 
constitute the hidden nodes, and are responsible for all 
the computations that take place after the input data are 
provided.

All ML procedures were carried out using the sklearn 
[90], XGBoost [47], and keras python packages [90]. They 
were used to develop target-specific ML SFs and hyper-
parameters were optimized with the hyperopt package. 
Our Python code and details regarding the hyperpa-
rameters are provided at https://​github.​com/​cabak​laud/​
SBVS-​PARP1. The VS performance of the models (both 
classifiers and regressors) with optimal hyperparameters 
was evaluated.

Hyperparameter tuning
ML algorithms are increasingly used in SBVS, owing to 
their robust performance. Hyperparameter optimization 
may lead to improvements in the predictive performance 
as different data have their own unique characteristics. 
A poorly-configured algorithm may not perform better 
than a random-guessing model, while a well-configured 
one may achieve good prediction accuracy. Bayesian opti-
mization is an efficient method to optimize the hyperpa-
rameters of an ML algorithm. It is based on a sequential 
search framework that incorporates both exploration 
and exploitation. In this study, we used the hyperopt 
Python library to search for optimal hyperparameters for 
model building [91]. There are three factors that must be 
defined: the search space, the objective function, and the 
optimization algorithm. The search space is the space of 
hyperparameters and their values, which can be defined 
by users. The objective function computes the statistical 

https://github.com/cabaklaud/SBVS-PARP1
https://github.com/cabaklaud/SBVS-PARP1
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assessment errors from the five-fold cross-validation 
of ML algorithms using all training data. The optimiza-
tion algorithm is a model that compares various hyper-
parameter values within the search space and finds the 
optimal one to minimize the loss, for example, the Tree-
structured Parzen Estimator (TPE). The TPE is a method 
that builds models to predict the performance of hyper-
parameters based on historical measurements, and then 
subsequently chooses new hyperparameters. The fmin 
function from hyperopt was used to carry out the opti-
mization process by minimizing the function over a 
given configuration space, storing the results and finding 
the best-performing configuration of hyperparameters. 
Bayesian optimization was used to search for the best 
values of the hyperparameters of each algorithm within 
the provided range (Additional file 1: Table S5).

Measuring virtual screening performance
In this study, we calculated the enrichment factor at the 
top 1%-ranked molecules (EF1%) [56], and the normal-
ized EF1% (NEF1%) [57] to evaluate VS performance. 
The EF1% and NEF1% values were computed using an in-
house bash script published as part of a recent protocol 
[39]. The metrics.precision_recall_curve function of the 
sklearn Python library was used to compute PR values 
and plot PR curves [90].
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