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Abstract 

Previous studies have shown that the three-dimensional (3D) geometric and electronic structure of molecules play 
a crucial role in determining their key properties and intermolecular interactions. Therefore, it is necessary to establish 
a quantum chemical (QC) property database containing the most stable 3D geometric conformations and electronic 
structures of molecules. In this study, a high-quality QC property database, called QuanDB, was developed, which 
included structurally diverse molecular entities and featured a user-friendly interface. Currently, QuanDB contains 
154,610 compounds sourced from public databases and scientific literature, with 10,125 scaffolds. The elemental 
composition comprises nine elements: H, C, O, N, P, S, F, Cl, and Br. For each molecule, QuanDB provides 53 global 
and 5 local QC properties and the most stable 3D conformation. These properties are divided into three categories: 
geometric structure, electronic structure, and thermodynamics. Geometric structure optimization and single point 
energy calculation at the theoretical level of B3LYP-D3(BJ)/6-311G(d)/SMD/water and B3LYP-D3(BJ)/def2-TZVP/SMD/
water, respectively, were applied to ensure highly accurate calculations of QC properties, with the computational 
cost exceeding 107 core-hours. QuanDB provides high-value geometric and electronic structure information for use 
in molecular representation models, which are critical for machine-learning-based molecular design, thereby contrib-
uting to a comprehensive description of the chemical compound space. As a new high-quality dataset for QC proper-
ties, QuanDB is expected to become a benchmark tool for the training and optimization of machine learning models, 
thus further advancing the development of novel drugs and materials. QuanDB is freely available, without registration, 
at https:// quandb. cmdrg. com/.

Scientific contribution 

• The QuanDB database contains comprehensive quantum chemical properties of diverse organic molecular enti-
ties, and all data have been rigorously pretreated and manually cleaned to ensure high accuracy.
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Introduction
Currently, the fundamental assumption of an AI-assisted 
molecular (drug or material) design is that “structurally 
similar molecules have similar properties.” A comprehen-
sive molecular representation is crucial for facilitating the 
discovery of novel molecules [1]. Generally, molecular 
representations with stronger discriminative ability tend 
to demonstrate superior performance in downstream 
molecular design tasks [2–5]. Traditional molecular 
descriptors require manual feature engineering, making it 
difficult to comprehensively represent molecules without 
expert knowledge [6]. Consequently, data-driven repre-
sentation models are increasingly used to extract unbiased 
features from molecules [7–10]. Additionally, as the rela-
tionships between the molecular structure and physico-
chemical (PC) properties, reactivity, and bioactivity are 

• By utilizing the quantum chemical properties provided by QuanDB, relevant three-dimensional (3D) electronic 
structural information can be included in comprehensive molecular representation models to facilitate drug 
and material design.

• Compared to other similar databases, QuanDB covers a broader space of chemical compounds, adopts a higher 
level of theoretical calculations, and offers a user-friendly interface.

Keywords Database, Quantum chemical properties, Cheminformatics, Machine learning

Graphical Abstract 

becoming better understood, researchers are gradually 
incorporating features that can include the three-dimen-
sional (3D) conformation of molecules in representation 
models [11–14]. The electronic and structural param-
eters of stable  3D conformations are of particular inter-
est because they critically affect several crucial properties 
of molecules in 3D space, such as their reactivity, strong 
electrostatic interactions, and chemical adsorption. Den-
sity functional theory (DFT) remains the most reliable 
and accurate method for obtaining the electronic struc-
ture information of the most stable  3D molecular con-
formations, which can be reflected by quantum chemical 
(QC) properties [15–18]. By incorporating QC properties 
into the training phase of the molecular representation 
models, their ability to represent the electronic structural 
space can be effectively enhanced, thereby improving the 
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performance of downstream tasks, such as predicting 
molecular properties [12, 19]. Therefore, the construction 
of a DFT-based QC property database for small organic 
molecules is of great significance for the virtual evalua-
tion, screening, and reverse design of novel molecules.

QC property databases aim to comprehensively rep-
resent the electronic structural information of the most 
stable  3D molecular conformations using a broad set of 
QC properties [20–22]. The QM9 database is currently 
the most extensively used and authoritative source of QC 
properties [22]. It comprises data for 134,000 molecules 
taken from the GDB-17 database [23]. Presently, QM9 
plays a crucial role as a benchmark dataset for evaluating 
molecular representation models [2, 3] and producing 3D 
molecular representations [24–29]. However, the QM9 
dataset has several limitations. First, the geometric struc-
tural optimization in QM9 is performed at the B3LYP/6-
31G(2df,p) theoretical level, which allows for potential 
improvements in the calculation accuracy [30]. Second, 
to reduce computational complexity, QM9 restricts the 
number of heavy atoms to a maximum of 9 and contains 
only 5 elements: H, C, O, N, and F. This limitation severely 
restricts the representation of diverse molecular structures 
and chemical compound spaces. Despite these limitations, 
the simple molecular structures in the QM9 dataset have 
yielded excellent predictive results when used as input data 
for current deep-learning models [3, 12], some of which 
achieved prediction errors close to zero [4]. Additionally, 
the molecules in the QM series datasets are computed and 
thus deviate to some extent from real materials. Finally, 
QM9 lacks a user-friendly visualization interface, which 
makes it difficult for researchers outside the field to take 
full advantage of its utility. In conclusion, it is imperative 
to develop a new database of high-quality QC properties 
that contains real compounds, has broad coverage of the 
chemical space, and provides a user-friendly interface.

To address the need for a new database, this study 
aimed to develop a new high-quality QC property data-
base, which comprises diverse labeled compounds with 
more comprehensive QC properties than previous 
databases and a user-friendly interface. It can not only 
further enrich and supplement high-value molecular 
structure representation information, but also provide a 
benchmark for the training and optimization of machine 
learning models, thereby facilitating the design and 
development of novel materials and drugs.

Construction and content
Data collection and curation
First, to identify the target molecular entity in the data-
base based on the research requirements, 23 endpoints 
were defined, covering three categories: bioactivity, toxic-
ity, and PC properties (Table 1). We used a semi-automatic 

text-mining method to collect experimental data from 
databases such as OCHEM [31], PubChem [32], and Drug-
Bank [33], which include the one of above 23 endpoints for 
compounds and annotated the literature sources. A good 
database should cover the largest possible chemical space. 
However, since the computational time is exponentially 
related to the number of atoms, the maximum learning 
space was limited by the computational resources available 
to our research group. Therefore, we restricted the range 
of elements to C, H, O, N, P, S, F, Cl, and Br, with a maxi-
mum of 40. Based on these constraints, we removed small 
molecules from the original data that exceeded these limits, 
along with their corresponding experimental values. Con-
sidering that different experimental data can be obtained 
for the same molecule and endpoint (e.g., due to variations 
in the experimental conditions), we performed data dedu-
plication and cleaning steps. The cleaning strategy was as 
follows: if the maximum ratio of logarithmic values for 
duplicate molecule entries exceeded 1.17  (log10 15), all data 
were deleted; otherwise, the mean value was used as the 
final experimental value. Because the geometric structure 
of a molecule significantly affects its quantifiable properties 
at the microscopic level, molecules with different confor-
mations were treated as different entities. Finally, we calcu-
lated the basic properties such as relative molecular mass, 
Canonical SMILES, InChI, and InChIKey for each molecule 
and annotated them. Finally, we obtained 154,610 molecule 
entities with 334,781 property data entries for 23 endpoints. 
The overall data-cleaning process is shown in Fig. 1.

Calculation and extraction of QC properties
Based on the tradeoff between the calculation accu-
racy and computational time, the basis set with the 
highest accuracy obtainable using our limited comput-
ing resources was chosen. For geometric structural 

Table 1 Endpoint properties and corresponding categories in 
QuanDB

Endpoint Type Endpoint Type

IC50 Bioactivity T1/2 PC

EC50 Bioactivity Vapor pressure PC

Ki Bioactivity Water solubility PC

Kd Bioactivity log BB PC

Boiling point PC Log Pow PC

Decomposition PC pKa PC

Enthalpy of fusion PC EC50 aquatic Toxicity

Flash point PC LC50 mammal Toxicity

HLH PC LD50 bee Toxicity

Henry’s Law Constant PC LD50 mammal Toxicity

Retention time PC LD50 oral Toxicity

Surface tension PC — —
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optimization, which has low conformational sensitivity 
to the basis set and is highly time-consuming, we chose 
a common 3-zeta basis set, viz., 6-311G(d) [34]. For the 
single-point energy calculation, which is sensitive to the 
basis set, we chose a higher-level 3-zeta basis set (def2-
TZVP) [35].

The calculation of the QC properties involves the 
following three steps. (1) The GMMX3.0 module in 
GaussView6 [36] is used to search for molecular confor-
mations. The lowest-energy conformation is then sub-
jected to geometric structure optimization and frequency 

analysis using Gaussian16 [37] at the B3LYP-D3(BJ)/6-
311G(d)/SMD/water [38] theoretical level. After obtain-
ing the lowest-energy conformation without imaginary 
frequencies, the single-point energy calculation is per-
formed at the B3LYP-D3(BJ)/def2-TZVP/SMD/water 
[38] theoretical level. (2) The Gaussian16 wavefunction 
file (.chk) is analyzed using Multiwfn software to obtain 
a.txt file containing the molecular electrostatic surface 
properties. (3) QC properties are extracted automatically 
in batches using internal scripts. In total, we obtained 
53 global and 5 local QC properties, as well as the 

Fig. 1 Data collection and cleaning process in QuanDB. The 23 proposed endpoint properties are listed in Table 1. Each molecule in QuanDB 
contains 53 global and 5 local QC properties, as well as the lowest energy conformation
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lowest-energy conformation for each molecule (Fig.  1). 
Therefore, the QC properties in QuanDB are derived 
from three sources: (i) properties obtained from the geo-
metric structural optimization and frequency analysis; 
(ii) properties calculated from the single-point energy of 
the lowest-energy conformation obtained in (i); and (iii) 
properties obtained from quantitative surface analysis of 
the wavefunction file using Multiwfn software [39].

Online database implementation
The backend service of the QuanDB database was built 
using the Python web framework FastAPI, whereas the 
frontend pages were developed using Vue 3.0 [40]. The 
entire database follows a backend/frontend separation, 
essentially implementing the MVVM pattern. All data 
are stored and managed using MySQL software. For 
molecular visualization, the RDKit toolkit [41] is used 
to generate two-dimensional (2D) graphs and 3D struc-
tures are displayed using 3Dmol.js [42]. All visualiza-
tions in QuanDB are implemented using ECharts [43]. 
QuanDB has undergone comprehensive testing to ensure 
functionality across multiple operating systems and web 
browsers.

Current database content and statistics
QuanDB is a comprehensive and user-oriented QC 
property database that is proposed as a high-quality 
benchmark for QC properties. QuanDB can be used to 
represent the most stable  3D conformations and elec-
tronic structures of small organic molecules, such as 
drugs and other materials. In turn, it could play an 
important role in a range of downstream tasks like prop-
erty prediction, molecule generation, and inverse mol-
ecule design.

The primary objective of most chemical databases is 
to explore a wide chemical compound space. To cover 
the chemical space of practically relevant compounds as 
much as possible while minimizing computational com-
plexity, QuanDB restricts the elemental composition to 
H, C, O, N, P, S, F, Cl, and Br and loosens the upper limit 
for the total number of atoms to 40. In total, QuanDB 
includes 154,610 molecular entities and 10,125 scaffolds. 
On average, each scaffold covers 14 molecules, and more 
than 85% of scaffolds contain fewer than 10 molecules. 
Approximately 46% of the scaffolds are distinct. A cloud 
diagram of the top 200 scaffolds is shown in Fig.  2, as 
implemented using the Scopy toolkit [44].

In terms of molecular composition, the distribu-
tion of total atoms and heavy atoms in QuanDB can is 
shown be seen in Fig.  3. On an average, the molecules 
in QuanDB contain 19 heavy atoms, whereas the most 
widely used QC property database (QM9the most widely 
used QC property database) has a limit, QM9, contains a 

maximum of 9 heavy atoms. In terms of heteroatoms, the 
three most frequently occurring elements are N, O, and 
F. Overall, compared with other popular QC property 
benchmarks, QuanDB provides a better means to test 
and evaluate the representation and generalization ability 
of models, and presents a greater challenge to their good-
ness of fit.

Another advantage of QuanDB is that the molecular 
entities are accompanied by experimental data. Cur-
rently, QuanDB contains 334,781 rigorously validated 
experimental data points for 23 endpoint properties 
(Fig. 4). Among these properties, bioactivity, toxicity, and 
PC properties account for 79%, 2%, and 19%, respectively. 
Among them,  IC50 has the highest number of entries 
(136,746), accounting for 47% of the entire dataset. For 
this subset of data, we annotated the target of compound 
action and the PubMed ID. Overall, QuanDB provides a 
high-quality, standardized dataset for drug and material 
design.

QuanDB provides 53 global QC properties (e.g., zero-
point energy) and 5 local QC properties (four atomic 
charges and one chemical bond order) for each molecule. 
These QC properties were categorized into three types 
based on their representative level: geometric, electronic, 
and thermodynamic properties. Additionally, QuanDB 
provides the lowest-energy conformation for each mol-
ecule, thus serving as a standard dataset for conformer-
generation research. The high-quality experimental data 
and accurate QC properties provided by QuanDB high-
light its potential as a benchmark dataset for evaluating 
model performance. In addition, the electronic structural 
information is expected to be useful for molecular repre-
sentation learning, thus enhancing model representation 
capabilities. A complete list of the 58 QC properties in 
QuanDB is presented in Table 2.

Utility and discussion
Web design and interface
QuanDB offers researchers a user-friendly interface to 
facilitate the access and use of its extensive data. The 
QuanDB database is available at https:// quandb. cmdrg. 
com. The search box at the top enables users to input the 
SMILES of a molecule or draw its structure. The ‘Browse’ 
option in the navigation bar allows users to explore the 
entire dataset, whereas the ‘Download’ feature provides 
multiple methods for data retrieval. Further assistance 
can be found in the ‘Help’ section.

Data browsing
By default, the browsing interface of QuanDB displays 
all molecular structures in the QuanDB identifier order. 
On the left-hand side of the browsing page, the filters 
are designed based on the endpoints of the experimental 

https://quandb.cmdrg.com
https://quandb.cmdrg.com
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properties, and users can filter compounds that contain 
the desired endpoints based on the requirements of their 
specific application. To select multiple endpoints, the 
database uses the “OR” logical operator for processing. 
In addition, the number of molecules displayed per page 
can be controlled using a selector at the top of the page. 
Finally, clicking on a compound card in the browsing 
interface opens the corresponding page with a detailed 
description, including the basic chemical properties and 
quantitative descriptors of the molecule.

Data searching
The search box on the right-hand side banner on any 
QuanDB page provides a quick search function. Users 
can enter the SMILES code or draw the structure of the 
query molecule using tools provided by the database in 
the search box, and then click the search icon to initi-
ate the search. After a few seconds, the user is redirected 
to the search results page. The search interface page is 
similar to the browsing interface, but the molecules are 
sorted in the descending order of similarity to the query 
molecule (based on the Tanimoto Index and 1024-bit 

ECFP4 Fingerprints), and the query structure is fixed on 
the right-hand side of the page. Similarly, users can fil-
ter the experimental data and perform other operations. 
Clicking on a compound card redirects the user to the 
corresponding detailed information page.

Data retrieval
The information page for a selected molecule consists of 
three sections: basic information, experimental and QC 
property data, and corresponding charts of the prop-
erties. As shown in Fig.  5A, the Basic Information sec-
tion provides the QuanDB ID and other characteristics, 
including the molecular formula, molecular weight, 
SMILES, InChI, and InChIKey. To provide a high-qual-
ity dataset for 3D molecular representation learning, 
QuanDB provides two-dimensional structures and the 
lowest-energy conformations obtained by energy opti-
mization using Gaussian 16 (based on B3LYP-D3(BJ)/6-
311G(d)/SMD/water). Additionally, upon clicking 
“Search 2D Similar Compounds” on the structure card, 
a search is performed using the current molecule as the 
query structure and the user is redirected to the search 

Fig. 2 Top 200 scaffolds cloud diagrams in QuanDB, excluding the cyclohexane. The size of the scaffolds layer is attributed to the corresponding 
frequency
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Fig. 3 Frequency distribution of atoms in QuanDB, including heavy atoms (blue bar chart) and all atoms (orange line graph)

Fig. 4 Experimental endpoints in QuanDB, along with their frequency distributions
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Table 2 QC properties in QuanDB and their abbreviations

Level Source Type Endpoint Abbr

Global OptFreq Thermo-dynamics Zero-point energy ZPE

Total energy Eopt

Total energy under 0 K E0k

Internal energy U

Thermal enthalpy H

Entropy under S

Gibbs free energy G

Heat capacity Cv

Thermal correction to internal energy Ucorre

Thermal correction to thermal enthalpy Hcorre

Thermal correction to Gibbs free energy Gcorre

Electronic
structure

Energy of HOMO EhomoOpt

Energy of LUMO ElumoOpt

Energy between EhomoOpt and ElumoOpt EgapOpt

Electronic spatial extent ESEopt

Dipole moment μopt

Quadrupole moment in traceless format Θopt

Isotropic polarizability αopt

SPE. Cal Geometric
structure

Molar volume by Monte Carlo algorithm VolumeMC

Thermo-dynamics Total energy E

Electronic
structure

Energy of HOMO EHOMO

Energy of LUMO ELUMO

Energy between EHOMO and ELUMO Egap

Electronic spatial extent ESE

Dipole moment μ

Quadrupole moment in traceless format Θ

Maximum electrostatic potential charge ESPCmax

Maximum Hirshfeld charge Hirshfeldmax

Maximum electrostatic potential charge CM5max

Maximum natural population analysis atom charge NPAmax

Minimum electrostatic potential charge ESPCmin

Minimum Hirshfeld charge Hirshfeldmin

Minimum electrostatic potential charge CM5min

Minimum natural population analysis atom charge NPAmin

QMSA Geometric
structure

Volume by
improved marching Tetrahedra algorithm

VolumeIMT

Estimated density according to mass and volume Density

Overall electrostatic potential surface area SA

Electronic structure Positive electrostatic potential surface area SA+

Negative surface electrostatic potential area SA−

Nonpolar electrostatic potential surface area SAnonpolar

Polar electrostatic potential surface area SApolar

Average of negative
electrostatic potential

ESPμ

Average of positive
electrostatic potential

ESPμ
+

Average of negative
electrostatic potential

ESPμ
−
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results page. Next, in the Experimental Data section, the 
elemental composition and distribution are presented in 
the form of bar and pie charts, respectively, to provide 
an approximate representation of the chemical space of 
the molecule. The green line in the bar chart represents 
the cumulative number of atoms (Fig. 5B). Below the ele-
mental composition diagram, experimental data related 
to bioactivity, PC properties, and toxicity are displayed 
separately (Fig.  5C). Each record is processed using the 
method mentioned in the “Data collection and curation” 
section. If available, links to relevant literature are pro-
vided for user reference. For bioactivity data, QuanDB 
not only indicates the endpoint (e.g.,  IC50), but also pro-
vides the corresponding UniProt ID for the target. In the 
case of toxicity data, information on the organism and 
administration route are provided to clarify the nature of 
the endpoint as much as possible.

Finally, the QC properties in the QuanDB database are 
divided into three sections based on the method of acqui-
sition: “Geometric Structure Optimization and Frequency 
Analysis,” “Single-point Energy Calculation,” and “Quan-
titative Molecular Surface Analysis.” The calculated val-
ues of the corresponding properties are displayed in the 
tables on the left side of each section. The radar chart on 
the right shows the distribution of molecular properties 
in the overall database. The blue line in the chart repre-
sents the properties of the molecule, whereas the red area 

represents the geometric mean value of all data in the 
database for that endpoint (Fig. 5D). Additionally, in the 
“Single-point Energy Calculation” section, five types of 
local QC properties are provided, i.e., four types of atomic 
charges and one chemical bond order. To present the 
results intuitively, QuanDB offers an interactive table to 
enable the user to hover over specific atoms or chemical 
bonds, which are then highlighted in the structure above 
(Fig. 5E). Furthermore, the download section on the right 
side of the page allows users to download desired infor-
mation based on their requirements (Fig. 5F).

Downloads and updates
Users can download the experimental properties, QC 
properties, and the lowest-energy conformations of 
molecules from the database without the need to log in 
or register. The dataset is divided into multiple subsets 
based on the 23 experimental endpoints as most applica-
tions of the database are expected to be focused on spe-
cific molecular endpoints. We hope that these datasets 
will assist researchers in exploring QC properties and 
establishing more comprehensive molecular representa-
tion models. In the future, we will continue to maintain 
and update the database; the QC properties and experi-
mental data will be updated every 6 months as new mol-
ecules are computed and processed. In addition, we plan 
to perform calculations for more complex molecules.

Table 2 (continued)

Level Source Type Endpoint Abbr

Variance of overall
electrostatic potential

ESPσ

Variance of positive
electrostatic potential

ESPσ
+

Variance of negative
electrostatic potential

ESPσ
−

Maximum of overall
electrostatic potential

ESPmax

Minimal of overall electrostatic potential ESPmin

Balance of charges ν

Product of ν and σ2 νESPσ

Internal charge separation Pi

Molecular polarity index MPI

Local SPE. Cal Electronic
structure

Electrostatic potential charge ESPC

Hirshfeld charge Hirshfeld

CM5 charge CM5

Natural population analysis atom charge NPA

Wiberg bond order Wiberg

Source: computational source of quantitative properties

OptFreq: geometric structure optimization and frequency analysis using the B3LYP-D3(BJ)/6-311G(d)/SMD/water method

SPE. Cal.: single-point energy calculation using the B3LYP-D3(BJ)/def2-TZVP/SMD/water level of theory

QMSA: quantitative molecular surface analysis conducted using Multiwfn software
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Conclusions
Many key PC properties and biological activities of 
molecules are closely related to their 3D geometric and 
electronic structures. Therefore, the construction of a 
high-quality property database is very important for 
facilitating the further development of molecular repre-
sentation models. Considering the limitations of existing 
available public QC property databases, we developed 
QuanDB as a more targeted and higher-quality QC data-
base. Currently, the QuanDB contains 154,610 molecu-
lar entities, 10,125 scaffolds and 334,781 experimental 
labels. For each molecule, 53 global and 5 local QC prop-
erties, as well as the lowest-energy conformation are pro-
vided, with a total computational cost of more than 107 
core-hours. The advantages of this database compared to 
existing ones are as follows: (i) All the molecular entities 

are labeled compounds, and the experimental data cover 
23 experimental property endpoints. (ii) The molecu-
lar structure types are more diverse, covering a wider 
chemical compound space, including nine elements (C, 
H, O, N, P, S, F, Cl, and Br), and allowing up to 40 atoms 
in each molecule. (iii) More comprehensive QC proper-
ties are provided, and the automated batch calculations 
and extraction of QC properties are realized by combin-
ing Gaussian16, Multiwfn, and in-house scripts. (iv) The 
database has a user-friendly interface, with intuitive and 
interactive features. The 23 endpoints are categorized 
into three major classes: bioactivity, toxicity, and PC 
properties. Users can download the entire dataset or spe-
cific subsets according to their needs.

In general, QuanDB is a high-value QC database sup-
ported by current computing power. We expect that 
QuanDB will become a valuable tool for enhancing the 

Fig. 5 Molecular information page in QuanDB: A Basic information of the molecule, including common molecular identifiers and 2D and 3D 
structures (QuanDB 69403); B Composition of the molecule, with a bar chart on the left showing the frequency distribution of each element, 
a line chart showing the cumulative distribution of heavy atoms, and a pie chart on the right showing the proportion of each heavy atom; C Three 
major categories of experimental data for the molecule; D Display of global QC properties of the molecule, with a radar chart on the right showing 
the distribution of properties relative to the overall database mean; E Interactive table for displaying local QC properties design; F Download area
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representation capability of molecular representation 
models, while providing a new benchmark for research-
ers to develop QC property prediction models. This 
will ultimately contribute to advancement in molecular 
design research.

Abbreviations
3D  Three-dimensional
DFT  Density functional theory
PC  Physicochemical
QC  Quantum chemical
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