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Abstract

Chemical compounds and drugs are an important class of entities in biomedical research with great potential in a
wide range of applications, including clinical medicine. Locating chemical named entities in the literature is a
useful step in chemical text mining pipelines for identifying the chemical mentions, their properties, and their
relationships as discussed in the literature.
We introduce the tmChem system, a chemical named entity recognizer created by combining two independent
machine learning models in an ensemble. We use the corpus released as part of the recent CHEMDNER task to develop
and evaluate tmChem, achieving a micro-averaged f-measure of 0.8739 on the CEM subtask (mention-level evaluation)
and 0.8745 f-measure on the CDI subtask (abstract-level evaluation). We also report a high-recall combination (0.9212
for CEM and 0.9224 for CDI). tmChem achieved the highest f-measure reported in the CHEMDNER task for the CEM
subtask, and the high recall variant achieved the highest recall on both the CEM and CDI tasks.
We report that tmChem is a state-of-the-art tool for chemical named entity recognition and that performance for
chemical named entity recognition has now tied (or exceeded) the performance previously reported for genes and
diseases. Future research should focus on tighter integration between the named entity recognition and
normalization steps for improved performance.
The source code and a trained model for both models of tmChem is available at: http://www.ncbi.nlm.nih.gov/
CBBresearch/Lu/Demo/tmChem. The results of running tmChem (Model 2) on PubMed are available in PubTator:
http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator

Background
The effects of chemicals on living systems of every scale
make them an exceptionally important class of entities
for biomedical research and clinical applications. These
effects may be therapeutic (as in drugs), investigational
(as in drug discovery) or unintentional (as in adverse
effects or environmental toxicities) [1]. As such, chemi-
cals/drugs are one of the topics most frequently searched
in PubMed [2,3]. While extracting chemical mentions
from biomedical literature has been attempted previously
[4], the task has not yet yielded results approaching those
of better-studied entity types such as genes/proteins
[5-7], species [8], and diseases [9]. This is likely due in
part to both the great variety of biologically relevant che-
mical structures and to the somewhat different properties
exhibited by chemical mentions. These properties include

systematic and semi-systematic methods for describing
chemical structure (e.g. formulas and IUPAC names),
whose highly compositional nature makes it difficult to
precisely determine the entity boundaries, or even the
number of entities present.

Related work
Recent reviews detail the considerable previous work on
chemical text mining from the biomedical or chemical
literature, concentrating primarily on chemical named
entity recognition [10,11]. Many of these previous sys-
tems focus effort on a specific area of interest. For exam-
ple, the Jochem dictionary uses a lexical approach to
identify drugs and other small molecules named in bio-
medical text [12], while Klinger, et al. [13] use a machine
learning approach with conditional random fields (CRF)
to find chemicals mentioned using the IUPAC systematic
format, reporting an f-measure of 0.815.
Systems with a broader focus have also been devel-

oped. The OSCAR system employs a hybrid approach
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for chemical text mining in chemistry publications [14].
Rocktaschel, et al. [4] use a lexical approach to locate
trivial names, abbreviations and drugs, and also employ
a conditional random field method to locate IUPAC
names to create a hybrid chemical named entity recog-
nition tool called ChemSpot, reporting an f-measure of
0.681 on the SCAI corpus.
There has also been increasing interest in the creation

of annotated corpora to assist in system development
and evaluation. Kolarik, et al. [15] survey available chemi-
cal resources and also report the creation of the SCAI
corpus with chemical mention annotations. In addition,
the CALBC Silver Standard corpus - created by pooling
the output of multiple systems - includes one mention
type which combines chemicals and drugs [16,17].
The most recent effort to create annotated corpora to

support chemical named entity recognition was the
CHEMDNER task at BioCreative IV, which attracted 27
participating teams [18]. This paper describes the crea-
tion of the tmChem system, our submissions to the
CHEMDNER task [19], and subsequent experiments
and analysis. One of our submissions achieved the high-
est f-measure reported for the CEM subtask, and our
high recall variant achieved the highest recall reported
in both the CDI and CEM subtasks.

Methods
CHEMDNER dataset
The CHEMDNER Corpus consists of 10,000 abstracts
published in 2013 in top journals from chemistry-related
disciplines [18]. Each abstract selected was human anno-
tated for all chemical mentions sufficiently specific to be
able to be associated with chemical structure information.
Nearly all mentions were assigned one of seven different
subtypes (ABBREVIATION, FAMILY, FORMULA, IDEN-
TIFIER, MULTIPLE, SYSTEMATIC, and TRIVIAL) as
illustrated in Figure 1. The corpus is divided into Training
(3,500 abstracts), Development (3,500 abstracts) and Test
(3,000 abstracts) sets. The full CHEMDNER corpus and
the complete annotation guidelines are available for down-
load (after free registration) [20].
The CHEMDNER Corpus was prepared for the recent

CHEMDNER task at BioCreative IV [18]. This task was

separated into two sub-tasks, the CEM (Chemical Entity
Mention) subtask, which evaluates performance at the
mention level, and also the CDI (Chemical Document
Indexing) subtask, which evaluates performance at the
abstract level.

System description
Many successful named entity recognition systems have
improved performance by exploiting the complementary
strengths of multiple models [5]. This approach is an
instance of the machine learning method of ensemble
learning, and requires sufficient differences between the
systems combined [21]. Here we combine two linear
chain conditional random fields (CRF) models employ-
ing different tokenizations and feature sets. These mod-
els were prepared by independently adapting existing
named entity recognition systems, in an attempt to take
advantage of the performance improvements of ensem-
ble learning. Model 1 is an adaptation of the BANNER
named entity recognizer to chemicals [22]. Model 2 was
created using CRF++ [23] by repurposing part of the
tmVar system for locating genetic variants [24]. Both
models also employ multiple post processing steps. We
then use several strategies to combine the output of the
two models for improved performance. The differences
between the models are summarized in Table 1 and
described in detail in the following sections.

CRF model 1
Model 1 is an adaptation of BANNER [22], which is
built on the MALLET toolkit [25], to chemical entities.
Sentence segmentation is performed by the built-in Java
class BreakIterator. The tokenization is finer than typi-
cally used for genes or diseases, breaking tokens not
only at white space and punctuation but also between
letters and digits and also between lower case letters fol-
lowed by an uppercase letter. An example of the tokeni-
zation is provided in Figure 2. We used the IOB label
set with only one entity label (“CHEMICAL”), a CRF
order of 1, and L2 regularization using the default Gaus-
sian prior variance, 1.0.
The feature set combines both features previously

used in BANNER and additional features added to
improve performance on chemicals. These additional
features were developed through many rounds of itera-
tive design involving training the model and analysing
the results on our internal evaluation set. We describe
the set of features as follows:

• Individual tokens and lemmas: We include a series
of binary features indicating whether the token
matches any token seen in the training data. We
also include a series of binary features for the lemma
for the token.

Figure 1 Sample sentence from the CHEMDNER Corpus with
illustrative chemical entity annotations of types SYSTEMATIC,
ABBREVIATION, TRIVIAL and FORMULA.
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• Part of speech: We include a series of binary fea-
tures for each part of speech.
• Word shapes: we process the token to inform the
model about its pattern of letters and digits. All
uppercase letters are replaced by “A,” lowercase

letters by “a,” digits by “0” and all other characters
by “x.” The results are used as a binary feature.
• Capitalization patterns: We employ several binary
features to indicate whether the token matches one
of several capitalization patterns, such as all capital
letters.
• Roman numerals and Greek letters: These are bin-
ary features which recognize if the token represents
either a Roman numeral (e.g. “III”) or the name of a
Greek letter ("alpha”).
• Character n-grams of length 2 through 4: Chemicals
are rich in morphemes that are either semantically

Table 1 Comparison of Model 1 and Model 2

Aspect Model 1 Model 2

System adapted BANNER [22] tmVar [24]

Preprocessing

Unicode transliteration No Yes

Tokenization whitespace
punctuation
digits
lowercase to uppercase

whitespace
punctuation
digits
lowercase to uppercase
uppercase to lowercase

Sentence segmentation Java BreakIterator None

Conditional random field configuration and settings

Implementation MALLET [25] CRF++ [23]

Order 1 2

Label model IOB with one entity label IOB with one entity label

Regularization L2 L2

Gaussian prior variance (s) 1.0 4.0

Feature frequency threshold 0 3

Features

Individual tokens Yes Yes

Morphology Lemmatization Stemming

Part of speech Yes No

Word shapes Yes Yes

Characters N-grams length 2 - 4 Prefixes and suffixes length 2 - 5

Character counts None Total characters, digits, uppercase, lowercase

ChemSpot [4] Yes No

Semantic affixes None Suffixes, alkane stems, trivial rings, simple multipliers, etc.

Chemical elements Name and symbol Name

Amino acids Name, 3-char abbreviation, 1-char abbreviation None

Chemical formulas Within a single token None

Amino acid sequences Across tokens None

Context window 2 3

Post processing

Consistency Yes No

Abbreviation resolution Yes Yes

Parenthesis balancing Yes Yes

Chemical identifiers Yes Yes

This table compares the setup and configuration of Model 1 and Model 2.

Figure 2 Sample text illustrating tokenization differences
between Model 1 and Model 2.
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meaningful, rare in text outside of chemistry, or both.
We therefore include character n-gram features of
length 2 through 4, which is longer than typically
used for genes and diseases.
• ChemSpot: The output of the ChemSpot system is
used as a feature [4], providing functionality similar
to a lexicon but with increased flexibility. We imple-
ment this as a binary feature, with any token over-
lapping a mention found by ChemSpot receiving the
value 1, and all others 0.
• Chemical elements: We use a list of element sym-
bols (“Tc”) and element names (“Technetium”), as
found in [26], to create two binary features. These
features recognize whether a token matches the
name of a chemical symbol or element, respectively.
• Amino acids: We also use a list of amino acid
names and both 3-character and 1-character amino
acid abbreviations, as found in [1], to create three
binary features. These features respectively recognize
whether a token matches the name of an amino
acid, one of the 3-character abbreviations or one of
the 1-character abbreviations.
• Chemical formulas: We determined that chemical
formulas were represented in text in ways that were
too variable to capture with straightforward pattern
matching. Instead, we decided to allow the machine
learning model handle the recognition of formulas
statistically. To facilitate this, we used a pattern to
identify tokens consisting of a sequence of element
symbols, such as “FCH,” the first token in the for-
mula “FCH2CH2N3.”
• Amino acid sequences: We used a pattern to
recognize sequences of amino acids such as “Phe-
Cys-Tyr,” which crosses multiple tokens.

The total number of feature weights used in Model 1
is 794,979.

CRF model 2
We developed a second CRF model using the CRF++
library [23] by repurposing part of the tmVar system for
locating genetic variants [24]. Since the system which
provided the initial implementation for Model 2 had a
significantly different purpose and implementation than
Model 1, the final models also contained significant
differences.
Non-ASCII Unicode characters are transliterated to a

similar ASCII equivalent, such as converting Greek
alpha ("a”) to the letter “a.” No sentence segmentation
is used. The tokenization is the same as tmVar; specifi-
cally, tokens are separated at whitespace and punctua-
tion, digits, lowercase letters and uppercase letters are
divided into separate tokens [24]. An example of the
tokenization is provided in Figure 2. This model also

uses the IOB label set, but uses an order 2 CRF model.
It also uses L2 regularization, with a Gaussian prior var-
iance set to 4.0. The feature cut-off threshold was set to
3, meaning that features that do not appear at least
three times in the training data are not used.
This model was adapted iteratively through analysis of

the evaluation set. Since the initial system is different
than BANNER, the final resulting feature set is different
than Model 1, as described below:

• General linguistic features: We included the origi-
nal token and stems using the Porter stemmer [27].
• Prefixes and suffixes: We extracted the prefixes
and suffixes (length: 1 to 5) as features.
• Character features: IUPAC mentions (e.g., “3-(4,5-
dimethyl-thiazol-2-yl)-2-5-diphenyltetrazolium-bro-
mide”) include many digits and non-alphanumeric
characters. For each token we therefore calculated
several statistics, including the number of characters,
number of digits and number of uppercase and low-
ercase letters, and use these as features.
• Roman numerals and Greek letters: These are bin-
ary features which recognize if the token represents
either a Roman numeral (e.g. “III”) or the name of a
Greek letter ("alpha”).
• Semantic features: We defined several binary fea-
tures representing characteristics specific to chemi-
cals, including suffixes (e.g. “-yl,” “-oyl,” “-one,” “-ate,”
“acid,” etc.), alkane stems (e.g. “meth,” “eth,” “prop”
and “tetracos”), trivial rings (e.g. “benzene,” “pyridine”
and “toluene”) and simple multipliers ("di,” “tri” and
“tetra”), as derived from [28].
• Chemical elements: We included a binary feature
to recognize the names of the chemical elements
(e.g. “hydrogen”) [26].
• Case pattern features: We applied the case pattern
features from tmVar [24]. Each token is represented
in a simplified form. Upper case alphabetic charac-
ters are replaced by “A” and lower case characters
are replaced by “a.” Likewise, digits (0-9) are
replaced by “0.” Moreover, we also merged consecu-
tive letters and numbers and generated additional
single letter “a” and number “0” as features.
• Contextual features: We included the general lin-
guistic and semantic features of three tokens from
each side as context. This is larger than for Model 1,
which uses only two tokens on each side.

Our analysis of the results of ChemSpot on our inter-
nal evaluation set demonstrated good performance for
long chemical mentions but relatively low recall for the
short mentions that constitute the majority of the anno-
tations in the CHEMDNER corpus. However our analy-
sis of Model 2 already demonstrated good performance
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on long chemical mentions, and strong features such as
the output of a system like ChemSpot tend to strongly
bias conditional random field models. Thus, we did not
use the output of ChemSpot as a feature for Model 2,
even though it helped Model 1, and this difference helps
to preserve the independence of the two models. The
total number of feature weights used in Model 2 is
96,435,808, two orders of magnitude more than in
Model 1.

Post-processing methods
We employed several post-processing steps, which var-
ied slightly between Models 1 and 2. These steps
include enforcing tagging consistency, abbreviation reso-
lution, boundary revision to balance parenthesis, and
recognizing identifiers.
We improved consistency - and significantly improved

recall - by tagging all instances of a specific character
sequence as a chemical mention if that sequence was
tagged by the CRF model at least twice within an abstract.
For example, if the CRF model found two instances of
“steroidal saponins,” a FAMILY mention, within an
abstract but missed a third instance, the missed instance
would be added. We further modified this module after
the CHEMDNER task to not add mentions that overlap
with mentions already tagged, for example to not add a
tag for “GO” if “GO-PDEA” is already tagged. This module
was only used by Model 1, since the output of Model 2
was found to be already be sufficiently consistent that this
rule did not improve performance.
We used the Ab3P tool to find local abbreviation defi-

nitions, such as “allopregnanolone (AP)” [29]. In both
models, if the long form was tagged by the CRF model,
then all instances of the abbreviation would be tagged in
the result. Model 2 employed two additional rules that
were not found to help Model 1. First, if both the abbre-
viation and long form mention were tagged by the CRF
model, then all mentions of the long form would be
tagged. Second, if the long form mention was not
tagged, then mentions matching the abbreviation were
removed.
While there are several mentions in the training data

with unbalanced parenthesis, square brackets and curly
brackets (braces), we determined that virtually all of the
unbalanced mentions returned by either of our models
were errors. We therefore attempt to balance each men-
tion with respect to parenthesis, square brackets and
curly brackets (braces) by adding or removing one char-
acter to the right or left of the mention. For example, if
the model tags “Cu(2+” and the next character in the text
is a right parenthesis (“)”), then the mention is extended
to include it. If no variant of adding or removing one
character to the right or left results in balanced

parenthesis, we simply drop the mention. This module is
used by both Models 1 and 2.
Chemical identifiers do not have a specific format,

making them very difficult to identify with machine
learning. We therefore created a lexicon of chemical
identifiers from the CTD database http://ctdbase.org/ by
extracting the chemical names consisting of 2 to 5 let-
ters, followed by at least two digits. We apply these as
patterns, allowing the characters between the letter and
digit blocks to vary. For example, the lexicon name
“NSC-114792” becomes the regular expression “NSC
[\-\_ ]{0,2}114792”. This module is also used by both
Model 1 and 2.

Converting CEM results to CDI results
The CDI task requires informative confidence rankings
for each mention. Model 1 used an approximation of
the marginal probability for each mention, that is, the
probability that the mention is correct, to calculate the
probability that the mention appears at least once in the
abstract.
Unfortunately, the MALLET implementation of mar-

ginal probability only provides the marginal probability
of each label. We therefore approximate the marginal
probability of each mention using n-best inference,
which determines the n label sequences with the highest
joint probability [30]. We find the set of mentions pre-
sent in the n = 20 label sequences with the highest joint
probability, and then consider the marginal probability
of each mention to be the sum of the joint probabilities
of the label sequences where the mention appears.
To calculate the probability that the mention appears

at least once in the abstract, we employ an assumption
that each mention is independent of the others, and
apply the noisy or function, which combines the prob-
ability that the mention appears with its frequency
within the abstract in a natural way [31]. Specifically,
given that a text t is found as a mention n times in
abstract a, with mention-level probabilities pm1 (t)
through pmn (t) , the abstract-level probability for t, pa(t),
is calculated as:

pa(t) = 1−
n∏

i=1

(1− pmi (t))

CRF++ does not provide implementations of either
marginal probability or n-best decoding, so Model 2
instead uses a small fixed probability.

Model combinations
We take advantage of the differences between Model 1
and Model 2 to combine their results in three different
ways. The “naïve combination” merely pools the results
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from Model 1 and Model 2. We noted during analysis of
the evaluation set that Model 2 had higher performance
on short mentions, and consequently provide a “heuris-
tic combination” which uses the results from Model 1
but replaces mentions of length 5 to 15 with the corre-
sponding results from Model 2. Our “high recall combi-
nation” combines the mentions returned by n-best
decoding in Model 1 with at least a marginal probability
of 0.1 - which provides high recall while maintaining
reasonable precision - with the results from Model 2.

Normalization
While recognizing chemical mentions is valuable, many
tasks ultimately require the mention to be identified or
normalized. We have thus paired our named entity recog-
nition system with a straightforward lexical approach for
normalization. Our lexicon of chemical entities and their
names was collected from MeSH [32] and ChEBI [33].
The system converts both mentions from the literature
and entity names in the lexicon to lowercase and removes
all whitespace and punctuation. For example, “flavone-C-
glycoside” becomes “flavonecglycoside.” The system then
assigns a MeSH identifier to those mentions which can be
found in the lexicon, or a ChEBI identifier if a matching
MeSH identifier cannot be found. Mentions that corre-
spond to a short form recognized by Ab3P are assigned
the same identifier as the long form found by Ab3P [29].
Mentions which do not map to a specific identifier are
ignored and mentions which can be assigned to both a
MeSH and ChEBI identifier are only assigned the MeSH
identifier.

Results
The evaluation measures consisted of precision (the pro-
portion of mentions returned that are correct), recall
(the proportion of correct mentions that are returned)
and f-measure (the harmonic mean of precision and
recall). In the CEM task, a true positive (tp) consists of
the system returning a mention whose boundaries
exactly match the boundaries of a mention annotated in
the test data. False positives (fp) are defined as the sys-
tem returning a mention whose boundaries do not
match any mention annotated in the test data, and false
negatives (fn) are defined as a mention annotated in the
test data whose boundaries do not match any mention
returned by the system. The performance measurements
for the CDI task are defined similarly, except that
instead of requiring mention boundaries to match, the
match must be the mention texts. Given these defini-
tions, precision (p), recall (r) and f-measure (f) are
defined as:

p =
tp

tp + fp
r =

tp
tp + fn

f = 2
p · r
p + r

We report two sets of performance values: one on our
internal evaluation set and one on the official test set.
The internal evaluation set was created by pooling the
official training and development data, then randomly
splitting this pool into 6000 abstracts for training (inter-
nal training set) and 1000 abstracts for evaluation during
development (internal evaluation set). The performance
values for the internal evaluation set were created by
training each model on the internal training set and
evaluating on the internal evaluation set. The perfor-
mance values for the official test set were created by
training each model on the union of the official training
and development sets, then evaluating on the official
test set. Overall results for the CEM task are reported in
Table 2 and results per chemical entity subtype are
reported in Table 3. Overall results for the CDI task are
reported in Table 4.

Discussion
There is a notable difference in the results between the
evaluation set and the test set. The results on the eva-
luation set followed the expected trends. Model 1 and
Model 2 have similar performance. The naïve model
combination of the Model 1 and Model 2 results
improves recall at the expense of precision, the heuristic
combination in provides the highest f-measure, and our
high recall combination provides the highest recall. The
primary difference in the test set is a reduction in preci-
sion for Model 1, resulting in a reduction in f-measure
by over 1%. While a performance reduction of this mag-
nitude is not unusual, this contrasts with Model 2,
where an increase in precision causes the f-measure to
increase. These trends carry over into the combination
runs. The difference between the CDI results are smaller
than the difference between the CEM results, presum-
ably due to the use of the marginal probability in Model
1. The f-measure achieved by Model 2 on the CEM task
was the highest achieved by any submission to the
CHEMDNER task.

Table 2 Results for CEM task

Setup Internal Evaluation Set Official Test Set

P R F P R F

Model 1 0.8773 0.8758 0.8766 0.8595 0.8721 0.8657

Model 2 0.8781 0.8634 0.8707 0.8909 0.8575 0.8739

Naïve
combination

0.8323 0.9290 0.8780 0.8192 0.9209 0.8671

Heuristic
combination

0.8659 0.9002 0.8827 0.8516 0.8906 0.8706

High recall
combination

0.7651 0.9290 0.8391 0.7672 0.9212 0.8372

Results for the CEM task for each experimental setup on our internal
evaluation set and the official test set, as measured by micro-averaged
precision (P), recall (R) and f-measure (F). The highest value is shown in bold.
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Error analysis
In other entity types such as genes, proteins and diseases,
determining the entity type of tokens not observed in the
training set is frequently difficult and must often rely on
context. Many tokens in chemical mentions have highly
distinctive features, however, which frequently allows the
model to infer that the token is part of a chemical men-
tion even if the token has not been seen previously. The
greater problem for chemicals seems to be determining
the mention boundaries, where errors cause a significant
performance reduction since each boundary error results
in both a false positive and a false negative under the
common practice of assigning each token to at most one
mention. We found, for example, that allowing bound-
aries to overlap instead of match exactly resulted in an
f-measure for Model 1 of over 0.92.
One issue which causes boundary errors in many entity

types is modifiers, since whether the modifier is consid-
ered part of the mention or not depends on the both the
modifier and the core term. Our error analysis found
many cases of boundary errors due to modifiers, such as
returning “aromatic hydrocarbons” instead of “polycyclic
aromatic hydrocarbons” or returning “Gynostemma pen-
taphyllum saponins” instead of “saponins.” We anticipate
that improving the modelling of tokens not seen during
training could address these cases.
Another issue common in other entity types is mentions

containing coordination ellipsis [34], such as “oleic, lino-
leic, and palmitic acids.” We observed both models having
difficulties finding complete coordinations, instead, we
often observed the models locating the non-elliptical part

of the mention (such as “3-O-alkyl clarithromycin” from
the mention “3-hydroxyl, 3-O-acyl and 3-O-alkyl clarithro-
mycin”). It seems likely that existing methods to handle
coordination based on supervised machine learning, such
as [35], would be effective in many of these cases. How-
ever, we believe that fully effective coordination resolution
may be a considerable challenge due to the significant
complexity of many coordinated chemical mentions (e.g.
“ribo and 2’-b-C-methyl ribo Janus type nucleosides”).
These mentions may benefit from a method that combines
coordination resolution with a lexical approach, such
as [34].
Another phenomenon more specific to chemicals relates

to the use of systematic and formula names. While some
chemical names - typically TRIVIAL names - are relatively
short and possess comparatively unambiguous boundaries,
chemical formulas and systematic names are descriptive
terminologies whose productivity mirrors the infinite array
of possible chemicals. Since lists of chemicals and chemi-
cal compounds are annotated as separate mentions, the
classifier must decide after every token whether to extend
the current mention or whether the next token begins a
new mention. While one would expect some subtypes to
be more fixed (e.g. TRIVIAL and FAMILY) and other to
trend more toward extensibility (e.g. SYSTEMATIC and
FORMULA), we instead observed that the annotated che-
mical subtypes did not provide sufficient information to
allow the models to reliably differentiate between them.
For example, some mentions annotated as subtype
FAMILY trend towards extensibility (e.g. “2-acetamido-3-
mercapto-3-methyl-N-aryl-butanamides”) while some
SYSTEMATIC mentions would be considered as relatively
fixed phrases (e.g. “phthalate”). The primary need for
handling this problem is to provide some way to model
mention completeness. This could be handled in many
ways. A lexical approach would attempt to ensure comple-
teness of chemical entity mentions by referring to a lexi-
con of chemical entities. A rule-based method would
provide the same information, but may allow IUPAC and
other systematic nomenclatures to be recognized directly.
These methods both model mention completeness indir-
ectly by determining the identity of the chemical entity
mentioned. An unsupervised method to model complete-
ness directly might attempt to locate the same mention in

Table 3 Results for CEM task per chemical entity subtype

Setup ABBR FAMI FORM IDEN MULT SYST TRIV NONE

Model 1 0.8768 0.8216 0.8199 0.8323 0.3969 0.9136 0.9013 0.7073

Model 2 0.8285 0.7871 0.8393 0.8615 0.4824 0.9196 0.8783 0.6829

Naïve combination 0.9132 0.8799 0.8936 0.9005 0.5326 0.9588 0.9403 0.7804

Heuristic combination 0.8837 0.8440 0.8318 0.8986 0.4020 0.9276 0.9273 0.7804

High recall combination 0.9137 0.9006 0.8809 0.8752 0.6030 0.9525 0.9414 0.7560

Results for the CEM task for each experimental setup on each chemical entity subtype, as measured by micro-averaged recall.

Table 4 Results for CDI task

Internal Evaluation Set Official Test Set

Setup P R F P R F

Model 1 0.8732 0.8664 0.8698 0.8804 0.8606 0.8704

Model 2 0.8572 0.8806 0.8687 0.8781 0.8724 0.8752

Naïve
combination

0.8138 0.9270 0.8667 0.8268 0.9189 0.8704

Heuristic
combination

0.8565 0.8934 0.8745 0.8663 0.8825 0.8743

High recall
combination

0.7422 0.9270 0.8244 0.7629 0.9224 0.8351
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a large amount of unlabelled text, where the boundaries
may be less ambiguous [36,37].
Non-boundary errors were of several types. One signifi-

cant source of error is short proteins. Because proteins
are large molecules with specific functions, they are
essentially highly specialized chemicals. However the
CHEMDNER task defined chemicals from the structural
composition perspective, specifically defining peptides 15
amino acids or longer as biochemical entities, which are
not annotated. Thus, relatively short proteins such as
“kaliotoxin” and “thioredocin-1” are often mentioned in
the abstracts with a discussion of their uses and effects,
similar to chemicals, but are considered false positives
when found because their length in amino acids exceeds
the threshold set for annotation. Since determining if
these mentions are chemicals requires integrating knowl-
edge that is often not present in the abstract, resolving
these cases requires identifying the mention, suggesting
that named entity recognition and normalization are not
always independent steps.
Abbreviations are highly ambiguous, and while our

use of abbreviation post-processing significantly helped
with their recognition, we found that Ab3P was not as
successful at locating the full mentions as in our recent
work on diseases [9]. The primary reason appears to be
non-alphabetic characters at the beginning of the long
form of the name, such as “1,2,3,4,6 penta-O-galloyl-b-
d-glucose (PGG).” We anticipate that updating the
abbreviation model to anticipate non-alphabetic content
at the beginning of the long form which is not reflected
in the short form would largely resolve this issue.

Differences between the models
We performed a series of experiments to explore which
differences between Model 1 and Model 2 caused the
performance differences between the two models. In
these experiments we chose the aspects of Model 2 we
considered most likely to improve the performance of
Model 1. These differences were then implemented in
Model 1, applied one at a time, and performance recal-
culated. To clarify exposition, we describe these differ-
ences in two sets.
The first set of differences we considered were the

finer tokenization, the model order (order 2 instead of
1), the size of the feature context window (3 instead of
2), and the Unicode transliteration preprocessing. All
experiments from this set resulted in a reduction to
both precision and recall on both the Evaluation and
Test sets (data not shown).
The second set of differences we considered were the

Gaussian prior variance and the feature frequency thresh-
old. The Gaussian prior variance (s) controls the
strength of the regularization, so that reducing s lowers
the ability of the model to fit the data, increasing

generalization and decreasing the chance of overfitting.
During the task, Model 1 used s = 1.0, the default, while
Model 2 used s = 4.0. The feature frequency threshold
(c) specifies that any feature appearing in a positive con-
text fewer times than the threshold would not be
included in the model. Model 1 did not use a feature fre-
quency threshold during the task (effectively 0), while the
threshold was set to 3 for Model 2. Increasing the fre-
quency threshold should result in increased model stabi-
lity, though this may come at the expense of ignoring
some useful rare signals.
Since a model with more stable features should

require less regularization, we expected that it would be
useful to optimize s and c together. We therefore ran a
series of 16 experiments, jointly varying the values of s
and c in Model 1 between s = {0.5, 1.0, 2.0, 4.0} and c
= {0, 1, 3, 5}. Contrary to our expectation, we found no
clear relationship between either s or c and the result-
ing performance (data not shown). We did determine,
however, that performance on the Evaluation set was
generally predictive of performance on the Test set. The
highest precision on the Evaluation set was provided by
s = 1.0 and c = 0 - the default configuration - and the
highest recall and f-measure were provided by s = 2.0
and c = 1. While these configurations also performed
very well on the Test set, the configuration with the
highest f-measure on the Test set was s = 0.5 and c =
5, primarily due to unexpectedly high precision. The
performance of these configurations is described in
Table 5.
These results suggest that jointly optimizing s and c is

useful and that the best advice is to use the configura-
tion that performs best on the Evaluation set. It should
also be noted, however, that the difference between the
highest and lowest result for precision, recall and f-mea-
sure (after removing the configuration s = 0.5, c = 0,
which performed poorly) are all relatively small,
approximately 0.01 (data not shown).
While these experiments have not exhaustively tested

every difference between the two models, most of the

Table 5 Model 1 CEM results for optimizing Gaussian
prior variance and feature frequency threshold

Internal Evaluation Set Official Test Set

Setup P R F P R F

s = 1.0, c = 0 0.8773 0.8758 0.8766 0.8595 0.8721 0.8657

s = 2.0, c = 1 0.8758 0.8778 0.8768 0.8973 0.8474 0.8716

s = 0.5, c = 5 0.8766 0.8731 0.8749 0.9009 0.8462 0.8727

Model 1 results for the CEM task for the Gaussian prior variance (s) value and
feature frequency threshold (c) value, which resulted in the highest micro-
averaged precision (P), recall (R) and f-measure (F) on our internal evaluation
set and the official test set. The highest value is shown in bold.

Results for the CDI task for each experimental setup on our internal
evaluation set and the official test set, as measured by micro-averaged
precision (P), recall (R), and f-measure (F). The highest value is shown in bold.
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differences between Model 1 and Model 2 caused a
reduction in performance when ported to Model 1. This
result suggests that the models are in fact independent.
The differences which improved performance - optimiz-
ing the feature frequency threshold (c) and the regulari-
zation parameter (the Gaussian prior variance, s)
allowed Model 1 to approach the performance of Model
2, however.

Conclusions
We used a model combination approach where the two
models have many differences. The models used different
tokenizations, feature sets, CRF implementations, CRF
parameters, and some variations in post processing. This
is in contrast to most previous NER work on model com-
bination, where many models are used but they typically
differ in only a single aspect, such as the model order [30].
Many of the remaining differences reduce performance
when the models are modified to be more alike.
Model 1 experienced a slight drop in performance

between the Evaluation and Test sets, while the perfor-
mance of Model 2 increased slightly. Model 2 achieved
the highest f-measure reported on the CEM task. Our
model combination runs succeeded in providing higher
recall, and we found our approach of preparing and com-
bining multiple CRF models and post-processing to be
effective overall. Unfortunately, combining the results of
multiple models incurs some inconvenience for practical
use, and the large size of the file containing the trained
parameters for Model 2 (over 1 Gb) may limit widespread
use. Regardless, both Model 1 and Model 2 are available
at our supplementary website (see abstract for the URL).
Moreover, the results of a full run of Model 2 over
PubMed is available in PubTator [6,38], including nor-
malization using the lexical approach described in the
Methods section.
We note that tmChem is now able to report perfor-

mance for mention-level detection of chemicals compe-
titive with (or even greater than) the performance
typically reported for genes, proteins and diseases. In
addition, our error analysis uncovered several problems
where further development would likely improve per-
formance. Interestingly, most of these would clearly
benefit from providing the named entity recognition
step with an informative signal regarding the identity
of the chemical entity being mentioned. Like gene and
other concept recognition tasks [9,39], it is important
to investigate how to normalize detected chemical
mentions to standard terminologies or ontologies in
future studies.
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