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Abstract 

Aromatase is a member of the cytochrome P450 superfamily responsible for a key step in the biosynthesis of estro-
gens. As estrogens are involved in the control of important reproduction-related processes, including sexual differ-
entiation and maturation, aromatase is a potential target for endocrine disrupting chemicals as well as breast cancer 
therapy. In this work, 3D-QSAR combined with quantitative profile of protein–ligand interactions was employed in 
the identification and characterization of critical steric and electronic features of aromatase-inhibitor complexes and 
the estimation of their quantitative contribution to inhibition potency. Bioactivity data on pIC50 values of 175 steroidal 
and 124 azaheterocyclic human aromatase inhibitors (AIs) were used for the 3D-QSAR analysis. For the quantitative 
description of the effects of the hydrophobic contact and nitrogen–heme–iron coordination on aromatase inhibi-
tion, the hydrophobicity density field model and the smallest dual descriptor Δf(r)S were introduced, respectively. The 
model revealed that hydrophobic contact and nitrogen–heme–iron coordination primarily determines inhibition 
potency of steroidal and azaheterocyclic AIs, respectively. Moreover, hydrogen bonds with key amino acid residues, 
in particular Asp309 and Met375, and interaction with the heme–iron are required for potent inhibition. Phe221 and 
Thr310 appear to be quite flexible and adopt different conformations according to a substituent at 4- or 6-position 
of steroids. Flexible docking results indicate that proper representation of the residues’ flexibility is critical for reason-
able description of binding of the structurally diverse inhibitors. Our results provide a quantitative and mechanistic 
understanding of inhibitory activity of steroidal and azaheterocyclic AIs of relevance to adverse outcome pathway 
development and rational drug design.
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Background
Aromatase cytochrome P450 is a key enzyme that cata-
lyzes the rate-limiting step of aromatization in the bio-
synthesis of C18 estrogens from C19 androgens [1]. 
Deficiencies or excesses of estrogens are associated with 
various pathological states, thus over the last 10  years 
numerous toxicological and pharmacological studies have 
been devoted to identify and design aromatase inhibitors 

(AIs) [2–4]. Many endocrine-disrupting chemicals 
(EDCs) interfere with the endocrine system in humans 
and wildlife by modulation of aromatase activity, which 
can dramatically alter the rate production and disturb 
cellular and systemic levels of estrogen, ultimately lead-
ing to cancers, diabetes, or developmental problems [5]. 
In response to these significant adverse effects of EDCs 
on public and environmental health, the US Environmen-
tal Protection Agency (US EPA) Office of Research and 
Development (ORD) identified EDCs as one of its top six 
research priorities in 1996. In the same year, screening 
and testing for endocrine active chemicals was mandated 
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under 1996 amendments to the Safe Drinking Water Act 
and Food Quality Protection Act [6]. To implement the 
legislation, the US EPA is developing adverse outcome 
pathways (AOPs) linking aromatase inhibition with 
adverse outcomes relevant to regulatory decision-making 
[7, 8].

Pathologically, estrogen promotes the growth and sur-
vival of breast cancer cells by binding and activating the 
estrogen receptor. The most direct breast cancer therapy 
is to reduce the amount of estrogen by interfering with its 
production via use of AIs. Because of their effectiveness, 
these AIs are quickly becoming the most frequently used 
anti-hormonal treatment for breast cancer. Further, some 
AIs are now being tested in breast cancer prevention tri-
als [9, 10].

Chemicals typically initiate their therapeutic and 
adverse effects by binding to specific proteins through 
protein–ligand interactions. Therefore, a detailed under-
standing of the protein–ligand interactions is a central 
topic in the understanding biology at the molecular level 
as well as screening and design of active compounds. 
X-ray crystal structures of human aromatase in com-
plex with the natural aromatase substrate androsten-
edione (4-androstene-3,17-dione, AD) and 6-substituted 
1,4-androstadiene-3,17-diones (ADDs) have provided 
insights into the structural factors contributing to the cat-
alytic and inhibitory mechanisms [1, 3, 11]. The ligands 
bind with their β-face oriented towards the heme group 
and C19 carbon within 4.3 Å from the iron atom. The 
Asp309 side chain and Met374 backbone amide that 
form hydrogen bond interactions with 3- and 17-keto 
oxygens, respectively, and the hydrophobic residues that 
pack tightly against the steroid backbone provide the 
molecular basis for the exclusive androgenic specificity 
of aromatase. C4 and C6 are near the active site access 
channel that begins at the protein-lipid bilayer interface, 
and long chain substituents at the 6β-position protrude 
into the access channel cavity.

AIs act through two distinct mechanisms to inhibit the 
action of aromatase and thereby reduce estrogen produc-
tion [9]. Type I inhibitors such as atamestane, exemes-
tane, and formestane are analogues of AD that bind 
competitively but irreversibly to the substrate-binding 
site of aromatase, causing permanent inactivation of the 
enzyme. Type II inhibitors such as letrozole, fadrozole, 
and vorozole are nonsteroidal compounds that interact 
reversibly with the heme prosthetic group of aromatase 
and occupy its substrate-binding site.

In the past decade, quantitative structure–activity 
relationship (QSAR) approaches based on 2D and 3D 
descriptors, pharmacophore, and molecular docking have 
been developed to predict inhibition potency of a limited 

number of structurally similar aromatase inhibitors [12–
14]. However, critical protein–ligand interactions and 
their quantitative contribution to inhibition potency are 
still largely uncharacterized for broader groups of AIs, 
in particular for the hydrophobic contact and coordina-
tion to the heme–iron in the active site. In this study, a 
3D-QSAR analysis of large number of steroidal and aza-
heterocyclic AIs elucidates the mechanisms of aromatase 
inhibition through identification and characterization of 
critical protein–ligand interactions in aromatase-inhibi-
tor complexes and provides quantitative estimates of the 
contribution of each interaction to inhibition potency. A 
mechanistic understanding of aromatase-ligand interac-
tions will facilitate development of AOPs and rational 
drug design for a diversity of AIs.

Methods
Dataset development
A dataset of chemical structures and in  vitro inhibitory 
activities of human aromatase inhibitors was compiled 
following an exhaustive literature search and review. The 
in  vitro activities were measured under similar experi-
mental conditions using human placental microsomes 
incubated with 1β[3H]-androstenedione. Racemic mix-
tures and compounds containing highly flexible chain 
substituents (chain length  ≥  7) were excluded during 
dataset development resulting in 175 steroidal and 124 
aromatic azaheterocyclic AIs. The in vitro activities were 
expressed as the half maximal inhibitory concentra-
tion (IC50) and transformed into corresponding pIC50 
[−  log(IC50)] as the expression of inhibition potency. 
The activity among the steroidal and azaheterocy-
clic AIs covered over three (42–200,000  nM) and four 
(1–467,000 nM) orders of magnitude for aromatase inhi-
bition, respectively. The AIs in the dataset were proto-
nated and energy minimized with MMFF94x using MOE 
(Molecular Operating Environment, Chemical Comput-
ing Group, Ontario, Canada). The structures, inhibition 
potencies, and references of the compounds are available 
in Additional file 1.

Model development
Both steroid-specific and generalized 3D-QSAR mod-
els were developed to account for different mechanisms 
of aromatase inhibition induced by steroidal and aza-
heterocyclic AIs. The steroid 3D-QSAR model develop-
ment used the steroidal AIs and followed an iterative 
process with three stages: fingerprint generation, QSAR 
development, and pharmacophore refinement [15–17]. 
The fingerprint generation stage built 3D-fingerprints 
using molecular docking and a structure-based phar-
macophore, then the 3D-QSAR model was trained with 



Page 3 of 13Lee and Barron ﻿J Cheminform  (2018) 10:2 

the generated fingerprint descriptors. At the third stage 
the pharmacophore was refined by adjusting its geo-
metric parameters including distances and angles. The 
procedure was then repeated until no improvement in 
the mean absolute error (MAE) could be observed. The 
steroid 3D-QSAR model was then used to estimate the 
quantitative contribution of nitrogen–heme–iron coordi-
nation on aromatase inhibition by subtracting contribu-
tions of other interactions from the experimental pIC50 
to develop a descriptor describing the heme coordina-
tion. The generalized 3D-QSAR model was built based 
on the steroidal and azaheterocyclic AIs with the devel-
oped heme coordination descriptor. The overall proce-
dure is depicted in Fig. 1 and detailed below.

Molecular docking
Docking experiments were conducted with ICM-Pro 3.8 
[18]. For the proper representation of protein flexibility 
upon ligand binding, the flexible docking was performed 
with two human placental aromatase structures (PDB 
ID: 3S79 and 4GL7) [3], in which a set of residues remain 
flexible during docking process. The aromatase struc-
tures were downloaded from Protein Data Bank (RCSB 
PDB, http://www.rcsb.org) and prepared by removing 
water and ligand molecules from the PDB files. For-
mal charges of + 3.0, − 0.5, and − 1.0 were assigned to 
the heme–iron, four heme nitrogens, and Cys437 sul-
fur, respectively. The carboxylate of Asp309 was proto-
nated before docking simulations. The ligand binding 
pocket for docking was defined by the active site resi-
dues (Arg115, Ile133, Phe134, Phe221, Trp224, Leu228, 
Ile305, Ala306, Asp309, Thr310, Val370, Leu372, Val373, 
Met374, Ile395, Ile398, Leu477, and Ser478) and heme 
prosthetic group.

Bioactive conformation selection
For more thorough search of conformational space, ten 
independent docking simulations were performed on 
each protein–ligand complex. Among a large number of 
docked conformations generated by the repeated docking 
simulations, the conformations observed three or more 
times (RMSD < 0.5 Å) were used as candidates of the bio-
active conformation to maximize the reproducibility of 
the results and reduce false positives of low probability. A 
bioactive conformation of a ligand among the candidate 
conformations was selected using a scoring function ΔG

where pICcal
50  is the pIC50 estimated with a 3D-QSAR 

model. The steric hindrance S(r) of ligand with the active 
site residues was calculated using Lennard-Jones poten-
tial U(r) from AMBER force field [19]

where NL and NR are the number of atoms in a ligand and 
the active site residues, respectively. In this work, only 
remarkable steric hindrances (U(r) ≥ 10) were taken into 
account.

Structure‑based pharmacophore model and 3D‑fingerprint
Protein–ligand interaction features were identified using 
a structure-based pharmacophore approach, beginning 
with a search for common steric and electronic features 
observed in docked conformations. A fingerprint was 
generated to describe 3D protein–ligand interactions 
in the active site of aromatase. The docked conforma-
tions of inhibitors were mapped onto the developed 
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Fig. 1  Description of 3D-QSAR development process for steroid and azaheterocyclic aromatase inhibitors
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pharmacophore and transformed into a 3D-fingerprint. 
Each bit of the 3D-fingerprint represents a pharmacoph-
ore feature.

Hydrogen bond and interaction with the heme–iron
The pharmacophore features describing hydrogen bonds, 
interactions of 19-hydroxyl and 19-keto oxygens with 
the heme–iron, and nitrogen–heme–iron coordina-
tion were identified using a function of hydrogen bond 
term in GOLD [20], which is the product of three block 
functions.

A block function is defined as follows:

where r, α, and β are ideal values for hydrogen-accep-
tor distance (H···A), donor-hydrogen-acceptor angle 
(D–H···A), hydrogen-acceptor-heavy atom attached to 
the acceptor angle (DH···A–X), respectively. x, xideal, and 
xmax in the block function are the absolute deviation of an 
actual variable from the ideal value, the tolerance window 
around the variable within which the hydrogen bond is 
regarded as ideal, and the maximum possible deviation 
from the ideal value, respectively. For the interactions 
with the heme–iron, the heme–iron and Cys437 sulfur 
were labeled as H and D, respectively, and 19-hydroxyl 
and 19-keto oxygens and an aromatic azaheterocyclic 
nitrogen were labeled as A. A fingerprint bit for an inter-
action is 1, which means an aromatase-inhibitor complex 
forms the interaction, if ΔR is greater than or equal to 0.6. 
The interaction between a C19 carbon and the heme–
iron is defined by distance between the atoms, whose bit 
is 1 if the distance is less than 4.3 Å.

Hydrophobic contact interactions
An empirical hydrophobicity density field model was 
applied to measure the hydrophobic interactions between 
ligand and hydrophobic residues in the active site of aro-
matase. The hydrophobicity density at grid points on 
solvent accessible surface of ligand was calculated using 
generalized-solvation free energy density (G-SFED) 
model [21], and the hydrophobic contact (log PC) was 
obtained by integrating the hydrophobicity densities on 
the contact surface. Additional details of the method can 
be found in our previous study of estrogen receptor α 
[17].

(3)
�R = B(�r,�rideal ,�rmax)B(�α,�αideal ,�αmax)

B(�β ,�βideal ,�βmax)

(4)

B(x, xideal, xmax) =







1 if x ≤ xideal
1.0−

x−xideal
xmax−xideal

if xideal ≤ x ≤ xmax

0 if x > xmax

3D‑QSAR development
Multiple linear regression combined with genetic algo-
rithm (GA-MLR) was carried out using the Rapid-
Miner5.2 tool (http://rapid-i.com) to select important 
interaction features and analyze their quantitative con-
tributions to aromatase inhibition. The model was built 
on a randomly selected set of 122 steroidal and 87 aza-
heterocyclic AIs (70% of the dataset) and validated using 
leave-one-out method and an external test set of the 
remaining 53 steroidal and 37 azaheterocyclic AIs. Due 
to the uncertainty of the binding mode of azaheterocy-
clic AIs and the limited understanding of the nitrogen–
heme–iron coordination, weight values (steroid  =  1.0 
and azaheterocycle = 0.1) were used during the machine 
learning process.

Nitrogen–heme–iron coordination
Four quantum mechanical descriptors, including 
enthalpy of formation of complex heme-azaheterocy-
cle ΔH [22], the energy gap between highest occupied 
molecular orbital (HOMO) and lowest unoccupied 
molecular orbital (LUMO) ΔE, dual descriptor [23] of 
an aromatic azaheterocyclic nitrogen Δf(r)N which coor-
dinate the heme–iron, and the smallest dual descriptor 
within the aromatic azaheterocycle Δf(r)S were calculated 
to describe the effects of nitrogen–heme–iron coordina-
tion on inhibition potency of azaheterocyclic AIs. All the 
calculations were done using Gaussian 03  W [24] and 
Multiwfn software [25]. The B3LYP functional was used 
with the LANL2DZ basis set with effective core potential 
on iron and the 3–21G basis set on all other elements to 
calculate ΔH. ΔE, Δf(r)N, and Δf(r)S were calculated by 
B3LYP functional with 6–311  ++G(d,p) basis set. The 
optimized compound structures were obtained at HF/3-
21G level of theory.

Results
Incorporation of protein flexibility in docking experiments
Proper representation of protein flexibility played a cen-
tral role in determining binding poses and affinities of the 
steroidal AIs with a structurally diverse pattern of substit-
uents at 2-, 3-, 4-, 6-, 7-, 10-, 16-, 17-, and 19-positions. 
The protein flexibility was incorporated in the molecu-
lar docking by the use of an ensemble consisting of two 
human placental aromatase structures. A residue, Phe221 
or Thr310, which allowed the rigid steroid core to bind 
in the conserved manner observed in the crystal struc-
tures, was treated as flexible during the docking for the 
steroidal AIs. Phe221 is located at the entrance of access 
channel and undergoes a rotation to provide sufficient 
space for the steroids with a bulky (more than two heavy 
atoms) 2-, 2α-, 4-, 6-, or 6α-substituent and estrogen 

http://rapid-i.com
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derivatives. 4α-substituted steroids were not found in the 
data set, but it is likely that a bulky 4α-substituent could 
be accommodated in the access channel by the conforma-
tional changes of Phe221. Thr310 also provides space for 
bulky 4β- and 6β-substituents by changing its side chain 
dihedral angle. Due to the absence of aromatase crystal 
structures in complex with azaheterocycles and struc-
tural diversity in azaheterocyclic AIs, the docking experi-
ments for azaheterocyclic AIs were performed using the 
rigid aromatase structures.

Structure‑based pharmacophore and 3D‑fingerprint
The structure-based pharmacophore captured both geo-
metric and electronic features common to the bioactive 
conformations and included 11 candidate features: (1) 
a hydrogen bond donor that interacts with the carbonyl 
oxygen of Ala306, (2) a hydrogen bond acceptor that 
interacts with the protonated Asp309 side chain, (3) a 
hydrogen bond acceptor that interacts with the Thr310 
side chain, (4) a keto or ether oxygen that form a hydro-
gen bond with the amide proton of Met374, (5) a hydroxyl 
oxygen that form a hydrogen bond with the amide proton 
of Met374, (6) a nitro oxygen that form a hydrogen bond 
with the amide proton of Met374, (7) a nitrile nitrogen 
that form a hydrogen bond with the amide proton of 
Met374, (8) an aromatic nitrogen that form a hydrogen 
bond with the amide proton of Met374, (9) a 19-hydroxy 

or 19-oxo oxygen or a C19 carbon that interacts with the 
heme–iron, (10) an aromatic azaheterocyclic nitrogen 
that coordinates the heme–iron, and (11) hydrophobic 
contact (log PC) with hydrophobic residues in the active 
site. The determined block function parameter values 
and their meanings (Eqs. 3, 4) are summarized in Table 1. 
The features 7, 8, and 10 were observed only in the aro-
matase-azaheterocycle complexes.

3D‑QSAR for understanding inhibition potency
Two 3D-QSAR models were developed: (1) a steroid 
3D-QSAR model for developing a descriptor describing 
the nitrogen–heme–iron coordination, and (2) a gen-
eralized 3D-QSAR model for identifying key steric and 
electronic features and analyzing their quantitative con-
tribution to inhibition potency of structurally diverse ste-
roidal and azaheterocyclic AIs with different inhibition 
mechanisms. The optimal generalized 3D-QSAR model 
had the nine bits fingerprint: seven binary bits for six 
hydrogen bonds and an interaction with the heme–iron 
(FP1-FP7) and two continuous bits for nitrogen–heme–
iron coordination and log PC (FP8 and FP9). Hydrogen 
bonds of hydroxyl oxygen and nitro oxygen with the 
amide proton of Met374 were not selected due to their 
low contributions. A summary of the developed pharma-
cophore, fingerprint, and 3D-QSAR models is provided 
in Table 2.

Table 1  Values and meanings of block function parameters for identification of protein–ligand interaction features

H hydrogen, D donor, A acceptor, X heavy atom attached to A

Term Meaning Value

Hydrogen bond Interaction with heme–iron

C19–OH or = O Azaheterocycle

H···A distance parameters (Å)

 r The ideal H···A distance 2.00 2.40 2.25

 Δrideal The tolerance window around r, with in which the hydrogen bond is regarded as 
ideal

0.50 0.25 0.25

 Δrmax The maximum possible deviation from r; above this, the interaction is not regarded 
as a hydrogen bond

0.65 0.65 0.65

D–H···A angle parameters (°)

 α The ideal D–H···A angle 180 180 180

 Δαideal The tolerance window around α, with in which the hydrogen bond is regarded as 
ideal

45 10 20

 Δαmax The maximum possible deviation from α; above this, the interaction is not regarded 
as a hydrogen bond

80 40 40

DH···A–X angle parameters (°)

 β The ideal DH···A–X angle 180 180 180

 Δβideal The tolerance window around β, with in which the hydrogen bond is regarded as 
ideal

80 80 60

 Δβmax The maximum possible deviation from β; above this, the interaction is not regarded 
as a hydrogen bond

100 100 100
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As shown in Table  3, the steroid 3D-QSAR model 
exhibited significant self-consistency (R2  =  0.78) as 
well as high internal predictive ability (Q2  =  0.76). 
External validation of the model with a set of 53 ster-
oids resulted in R2 of 0.77. Most of the steroids (136, 
78 percent) were predicted within a 0.5 log unit error, 
and only four steroids had prediction errors between 
1.0 and 1.4 log units. The generalized 3D-QSAR model 
showed lower but acceptable performance, where 
R2 and MAE for training set were 0.73 and 0.449 log 
units, respectively. The results of leave-one-out cross 
(Q2 = 0.75) and external validations (R2 = 0.72) dem-
onstrated good predictive power of the generalized 
model. Plots of the computational results versus the 
experimental pIC50 are shown in Fig.  2. The 3D-fin-
gerprints and predicted pIC50 values are available in 
Additional file 1.

Description of nitrogen–heme–iron coordination
The azaheterocycles that coordinate with the heme–iron 
were identified using the scoring function (Eq.  1) and 
subjected to analysis of the nitrogen–heme–iron coor-
dination. Docked conformations forming the coordina-
tion were generated for 104 out of 124 azaheterocyclic 
AIs, and 87 of the conformations were selected as the 
bioactive conformation. Density functional theory (DFT) 
calculations were performed on the different azahetero-
cyclic groups, including 1,2,3-triazole, 1,2,4-triazole, imi-
dazole, isoquinoline, phthalazine, pyrazole, pyridazine, 
pyridine, pyrimidine, and tetrazole, to determine ΔH of 
each group of compounds. The results showed that ΔH 
(Fig. 3a) and ΔE (Fig. 3b) could not sufficiently describe 
the coordination of azaheterocyclic AIs, where R2 values 
were 0.30 and 0.0, respectively.

The dual descriptor is a local reactivity descriptor 
defined as the difference between the nucleophilic and 
electrophilic Fukui functions

If Δf(r)  >  0, then the site is favored for a nucleophilic 
attack, whereas if Δf(r) < 0, then the site may be favored 
for an electrophilic attack. Δf(r)N showed low correla-
tion (R2 = 0.08) but could describe the coordination well 
(R2 =  0.41) excluding eight outliers which far overesti-
mate the heme coordination (Fig. 3c). The dual descriptor 
was modified in different ways to develop more informa-
tive descriptor that can explain the coordination well. 
The smallest dual descriptor of an atom within the aro-
matic azaheterocycle Δf(r)S showed high correlation with 
the coordination (R2 =  0.61) (Fig.  3d) and was used for 
development of the generalized 3D-QSAR model.

(5)�f (r) = f +(r)− f −(r)

Table 2  Summary of pharmacophore, fingerprint, and QSAR models parameters

a  Nitro group was excluded
b  Not applicable
c  Aromatic azaheterocycle

Pharmacophore Fingerprint Index QSAR coefficient

Type Amino acid Liganda Steroid Generalized

Hydrogen bond Ala306 Any donor FP1 0.296 0.229

Hydrogen bond Asp309 Any acceptor FP2 0.679 0.621

Hydrogen bond Thr310 Any acceptor FP3 0.791 0.710

Hydrogen bond Met374 Keto or ether oxygen FP4 0.823 0.821

Hydrogen bond Met374 Nitrile nitrogen FP5 NA 1.278

Hydrogen bond Met374 Narc nitrogen FP6 NA 2.237

Heme–iron interaction Heme–iron 19-OH, 19 = O, C19 FP7 0.721 0.724

Coordination Heme–iron Narc FP8 NA 38.587Δf(r)S + 3.931

log PC Hydrophobic residues Hydrophobic surface FP9 2.234 1.969

Intercept NAb NA NA 0.270 0.755

Table 3  Performance of  the steroid and  universal 
3D-QSAR models

a  1.0 and 0.1 weight values were used for steroid and azaheterocycle data, 
respectively, during training process
b  Not applicable

Data set Value Steroid Generalized

Whole Steroid Azaheterocycle

Training Data no. 122 209 122 87

R2 0.78 0.73 0.78 0.60

Q2 0.76 0.75a NAb NA

MAE 0.326 0.449 0.328 0.619

External  
validation

Data no. 53 90 53 37

R2 0.77 0.72 0.76 0.59

MAE 0.365 0.496 0.377 0.667
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Discussion
Protein flexibility in ligand binding
A complete and conclusive understanding of aromatase 
inhibition has remained elusive because of limited 
understanding of conformational changes of aromatase 
upon ligand binding and the effects of interactions with 
the active site and the heme–iron on ligand affinities 

[26–28]. Ligand binding can involve a wide range of 
induced conformational changes in the protein backbone 
and side chains to form specific protein–ligand complex. 
It is therefore critical to accurately take into account the 
protein flexibility in ligand docking and virtual screening 
[29, 30]. The crystal structures of human placental aro-
matase showed that most residues in the active site were 

Fig. 2  Scatter plots of pIC50 calculated with steroid (a, b) and generalized (c, d) 3D-QSAR models for the training sets (a, c) and external validation 
sets (b, d)
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inflexible, adopting similar conformations in the crystal 
structures, but the side chain dihedral angle of Thr310 
varied up to 53° to reduce steric hindrance and maintain 
a hydrophobic contact with the 6β-2-alkynyloxy groups 
accommodated in the access channel. Upon inspection of 
the flexible docking results, it was observed that binding 

modes of 4β-, 6β-, 4-, 6-, 6α-substituted androgens are 
similar with crystal binding modes of the 6β-2-alkynyloxy 
ADDs. The 4β- and 6β-substituents were accommodated 
in the access channel and the side chain dihedral angle of 
Thr310 varied up to 167° to reduce steric hindrance and 
stabilize the complexes. Specifically, Thr310 stabilized 

Fig. 3  Correlation of quantum mechanical descriptors, enthalpy of formation (ΔH, a), HOMO-LUMO gap (ΔE, b), dual descriptor (Δf(r)N, c), and small-
est dual descriptor (Δf(r)S, d), with the contribution of nitrogen–heme–iron coordination to inhibition potency. The eight outliers are shown as open 
cycles (c)
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the 4β-acetoxy 5-androstene-17-one by forming hydro-
gen bond with the acetoxy group (Fig. 4a). On the other 
hand, 4-, 6-, and 6α-substituents protruded into the 
access channel which induces conformational changes 
in the Phe221 side chain to reduce steric hindrance and 
maintain a hydrophobic contact with the substituents 
(Fig. 4b).

Hydrophobic contacts
Inhibition potency was expressed as a linear combination 
of interaction features

The product of a bit in the 3D-fingerprint, FPi, and 
its regression coefficient, ci, represents the independ-
ent contributions of each interaction feature to inhibi-
tion potency. The intercept C is the inhibition potency 
without any protein–ligand interactions, which is 
approximately zero in the both 3D-QSAR models. The 
importance of a hydrophobic character for the aromatase 
inhibition has been well recognized [31–33], but there 
are no theoretical or experimental studies for estimating 
the quantitative contribution from the hydrophobic con-
tact. In this study, the log PC describing the hydrophobic 
interactions was calculated by the sum of hydrophobic-
ity densities on the hydrophobic contact surface. The 
hydrophobic core of steroids extensively interacted with 
hydrophobic residues including Ile133, Phe134, Phe221, 
Trp224, Val370, and Leu477 and this observation is in 

(6)pIC50 =

∑10

i=1
ciFPi + C .

agreement with previous reports [1, 34]. Diverse flexible 
substituents at different positions also formed hydro-
phobic contact, but the inclusion of these hydrophobic 
contacts resulted in overestimation of inhibition potency 
(Fig. 5a). This observation is consistent with our previous 
results that without steric hindrance or a hydrogen bond 
to reduce degree of rotational freedom a flexible group 
can adapt alternate conformations which destabilizes the 
hydrophobic contacts and reduces binding affinity [15, 
17]. 4-, 4β-, 6-, 6α-and 6β-substituents accommodated 
in the accessible channel formed extensive hydropho-
bic interactions with Thr310, Phe221, Val369, Val370, 
Ser478, but could not contribute to inhibition potency 
(Fig. 5b). Therefore, atoms in the flexible substituents and 
access channel were excluded in log PC calculation for 
both steroidal and azaheterocyclic AIs.

Inhibition potency of steroidal AIs
The results of 3D-QSAR models indicates that inhibi-
tion potency of steroidal AIs is markedly dependent on 
the hydrophobic nature of steroid core and potent steroi-
dal AIs form hydrogen bonds with residues and interact 
with the heme–iron. In the generalized 3D-QSAR model, 
the calculated log PC values for the 175 steroids ranged 
from 1.286 to 2.125 corresponding to from 2.533 to 4.185 
orders of magnitude in pIC50, which account for up to 83 
percent of the inhibition potency.

A hydroxyl, ether, or keto group could form a hydro-
gen bond with Ala306, Thr310, Asp309, and Met374 
depending on position and configuration of the group 

Fig. 4  Close-up view of the aromatase active site in complex with 4β-acetoxy 5-androstene-17-one (a) and 6α-n-hexyl 4-androstene-3,17-dione 
(b). The protein backbone is rendered in rainbow color (N terminus, blue; C terminus, red): carbon, gray; nitrogen, blue; oxygen, red; iron, orange. 
The ligand carbons are shown in magenta and optimized flexible Thr310 (a) and Phe221 (b) residues are shown in cyan. The hydrogen bonds 
between the ligands and active site residues are drawn as green dashed lines
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and increase inhibition potency less than one order of 
magnitude (approximately from 2 to 7-fold). The 17-keto 
oxygen is responsible for a hydrogen bond contact with 
the amide backbone of Met374. Moreover, 3-keto, 
3α-hydroxyl, 4-keto, and 4-hydroxyl oxygens in AD deriv-
atives are found to form hydrogen bonds with the Asp309 

side chain, whereas 3-hydroxyl in estrogen derivatives 
could form a hydrogen bond with the Ala306, Thr310, or 
Asp309. 4β-hydroxyl oxygen is found to form hydrogen 
bond with the Ala306. One steroidal and many azahet-
erocyclic AIs have a nitro group that forms a hydrogen 
bond with the Asp309 side chain or amide backbone of 
Met374, but contributions of the hydrogen bonds were 
negligible. This is consistent with the experimental evi-
dence that the nitro group is a very poor hydrogen bond 
acceptor in contrast to the excellent hydrogen bonding 
capacity of the keto and carboxylic acid groups [35].

The C19 carbon and 19-hydroxy and 19-oxo oxygens of 
androgens are positioned sufficiently close to the heme 
moiety to allow direct attack by an iron-bound oxidant 
[36]. Inspection of the steroid 3D-QSAR results for 15 
available 19-hydroxy and 19-oxo derivatives indicates 
that only androgen derivatives with specific structures, 
which might be related to reactivity of the oxygens, are 
able to form sufficient interaction with the heme. There-
fore, the interaction feature of 19-hydroxyl and 19-keto 
oxygens was identified by considering both binding 
geometry and environment of the C19 oxygens (Fig.  6). 
The interactions with the heme moiety contributed to 
5.3-fold increase in inhibition potency.

Inhibition potency of azaheterocyclic AIs
The results of the generalized 3D-QSAR suggest that 
high affinities of azaheterocyclic AIs arise from their dual 
interaction with the active site and the heme–iron. Most 
azaheterocyclic AIs were small compounds with highly 
polar groups, such as nitro and nitrile, together with at 
least one polar azaheterocycle. Therefore, the azahet-
erocyclic AIs form less hydrophobic contacts compared 
with steroidal AIs, where log PC values for the 124 aza-
heterocyclic AIs ranged from 0.203 to 1.910 correspond-
ing to from 0.400 to 3.762 orders of magnitude in pIC50, 
which account for approximately 10–50% of inhibition 
potency. Many azaheterocyclic AIs have nitrile groups 
and could form a hydrogen bond with the amide back-
bone of Met374 increasing inhibition potency 19-fold. 
Aromatic azaheterocyclic nitrogen also could form a 
hydrogen bond with the amide backbone of Met374 and 
significantly stabilized interaction with aromatase (173-
fold increase in inhibition potency).

The coordination of aromatic azaheterocyclic nitrogen 
with the iron atom of the heme moiety is an important 
feature of potent and selective aromatase azaheterocy-
clic AIs [2, 37]. In an effort to determine an electronic 
feature important in binding besides the nitrogen–
heme–iron coordination we attempted to develop a 
quantum–mechanical descriptor correlated with the 
contribution of the heme coordination. The contribu-
tion of the heme coordination was estimated indirectly 
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3,17-dione (b) with computational values. The pIC50 values were 
calculated with (blue) or without (orange) the hydrophobic contact 
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and R2 are hydrogens. R3 is hydrogens or ketone. R4 is any functional 
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by subtracting the contributions of the other interaction 
features from the experimental inhibition potency and 
ranged from 1.427 to 7.219 log units in pIC50. The sig-
nificance and variance of the heme coordination urges 
the use of a numerical descriptor other than the binary, 
presence (1) or absence (0), for describing insignifi-
cant contributions (< 1 log unit) of hydrogen bonds and 
interactions with heme–iron (FP1-FP7). The quantum 
mechanical descriptors describing chemical reactivity ΔH 
and ΔE have been successfully applied to describe aro-
matase inhibitory activity of structurally similar or simple 
azaheterocycles [38, 39] but could not explain the struc-
turally diverse azaheterocycles of this study. The devel-
oped smallest dual descriptor Δf(r)S provided sufficient 
description of the coordination (R2 = 0.61) and indicates 
that the effects of nitrogen–heme–iron coordination on 
ligand affinity depends on minimal nucleophilic reactiv-
ity of an azaheterocycle rather than that of the azahetero-
cyclic nitrogen coordinating the heme–iron.

Quantitative profile of aromatase‑steroid interactions
Introduction or elimination of a functional group in a 
ligand induces changes in steric and electronic proper-
ties that modify protein–ligand complex structure and 
bind affinity. The prediction results for the steroidal 
AIs showed that the generalized 3D-QSAR can success-
fully explain the pIC50 variation according to the struc-
tural modification. Introduction of a polar group, such 
as hydroxyl and ketone, at 3-, 4-, or 17-position resulted 

in formation a hydrogen bond with Ala306, Asp309, 
Thr310, or Met374, which accounts for from 0.229 to 
0.821 orders of magnitude increase in pIC50, but also 
decrease in hydrophobicity of ligand around the substi-
tution position. Introduction of polar groups at other 
positions decreased pIC50 by reducing hydrophobic 
contacts. The pIC50 variations in structural modifica-
tion are shown in Fig.  7. Introduction of a keto group 
at 7-position of 5-androstene-17-one induced 1.016 
orders of magnitude decrease in pIC50 by reducing log 
PC near the 7-position. An additional 4β-hydroxyl or 
4-keto group could form a hydrogen bond with Ala306 
or Asp309 increasing pIC50 by 0.229 and 0.621 orders 
of magnitude, respectively, but also decrease log PC by 
0.364 and 0.274 corresponding to 0.718 and 0.539 order 
of magnitude in pIC50, respectively. Substitution of the 
17-keto group in 5-androstene-7,17-dione with hydroxyl 
group resulted in loss of a hydrogen bond with Met374, 
which account for 0.821 orders of magnitude decrease in 
pIC50. The C19 demethylation and many of 19-hydroxyl 
and 19-keto substitutions resulted in loss of the interac-
tion with the heme–iron and decrease in log PC up to 
0.325, which account for 0.724 and 0.640 orders of mag-
nitude decrease in pIC50, respectively. These observa-
tions are consistent with the results of previous QSAR 
study [34] suggesting that the optimum number of 
hydrogen bond acceptor should be less than or equal 
to two and optimal hydrophobicity for ideal aromatase 
inhibitors.
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Conclusion
In this study, we have developed a framework for under-
standing inhibition mechanisms of steroid and azahet-
erocyclic AIs based on the 3D-QSAR approach combined 
with quantitative profile of protein–ligand interactions. 
The hydrophobicity density field model and the smallest 
dual descriptor Δf(r)S were successfully used in explain-
ing stabilization of aromatase-inhibitor complex through 
the hydrophobic contact and nitrogen–heme–iron coor-
dination, respectively. The results clearly show structural 
factors of potent steroidal and azaheterocyclic AIs: (1) 
hydrophobic steroid backbone with one or two hydro-
gen bond acceptors that form potent hydrogen bond 
with Asp309 or Met375 and C19 or C19 heteroatom 
that interact with the heme–iron and (2) highly reactive 
azaheterocycles with proper conformation that coordi-
nate the heme–iron. Our approach represents a first step 
toward the in silico evaluation of aromatase inhibitory 
potency during the early stages of toxicity assessment, 
and will facilitate AOP development and breast cancer 
drug discovery.
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