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Abstract 

Background:  Interaction fingerprints (IFP) have been repeatedly shown to be valuable tools in virtual screening to 
identify novel hit compounds that can subsequently be optimized to drug candidates. As a complementary method 
to ligand docking, IFPs can be applied to quantify the similarity of predicted binding poses to a reference binding 
pose. For this purpose, a large number of similarity metrics can be applied, and various parameters of the IFPs them-
selves can be customized. In a large-scale comparison, we have assessed the effect of similarity metrics and IFP con-
figurations to a number of virtual screening scenarios with ten different protein targets and thousands of molecules. 
Particularly, the effect of considering general interaction definitions (such as Any Contact, Backbone Interaction and 
Sidechain Interaction), the effect of filtering methods and the different groups of similarity metrics were studied.

Results:  The performances were primarily compared based on AUC values, but we have also used the original 
similarity data for the comparison of similarity metrics with several statistical tests and the novel, robust sum of rank-
ing differences (SRD) algorithm. With SRD, we can evaluate the consistency (or concordance) of the various similarity 
metrics to an ideal reference metric, which is provided by data fusion from the existing metrics. Different aspects of 
IFP configurations and similarity metrics were examined based on SRD values with analysis of variance (ANOVA) tests.

Conclusion:  A general approach is provided that can be applied for the reliable interpretation and usage of similarity 
measures with interaction fingerprints. Metrics that are viable alternatives to the commonly used Tanimoto coefficient 
were identified based on a comparison with an ideal reference metric (consensus). A careful selection of the applied 
bits (interaction definitions) and IFP filtering rules can improve the results of virtual screening (in terms of their agree-
ment with the consensus metric). The open-source Python package FPKit was introduced for the similarity calcula-
tions and IFP filtering; it is available at: https​://githu​b.com/david​bajus​z/fpkit​.
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Introduction
Interaction fingerprints are a relatively new concept in 
cheminformatics and molecular modeling [1]. As molec-
ular fingerprints are binary (or bitstring) representations 
of molecular structure, analogously, interaction finger-
prints are binary (or bitstring) representations of 3D 
protein–ligand complexes. Each bit position of an inter-
action fingerprint corresponds to a specific amino acid 
of the protein and a specific interaction type. A value of 

1 (“on”) denotes that the given interaction is established 
between the given amino acid and the small-molecule 
ligand (a 0, or “off” value denotes the lack of that specific 
interaction). Two such fingerprints are most commonly 
compared with the Tanimoto similarity metric (taking a 
value between 0 and 1, with 1 corresponding to identi-
cal fingerprints, i.e. protein–ligand interaction patterns). 
In the most common setting, the Tanimoto similarity 
is calculated between a reference fingerprint (usually 
belonging to a known active molecule) and many query 
fingerprints.

Despite the straightforward definition, interac-
tion fingerprints have been implemented by various 
research groups and commercial software  developers 
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with slight differences in the specifics. The first inter-
action fingerprint was termed structural interaction 
fingerprint (SIFt) and was introduced by Deng et  al. 
[2]. This implementation contained originally seven 
interaction types (any contact, backbone contact, side-
chain contact, polar contact, hydrophobic contact, 
H-bond donor and acceptor), and was later extended 
to include aromatic and charged interactions as well 
[3]. This modified version is implemented in the pop-
ular Schrödinger molecular modeling suite, which 
we also applied in this work, see Table  1 [4]. A simi-
lar implementation was published by Cao and Wang 
[5], containing 10 interactions per residue, and termed 
ligand-based interaction fingerprint (LIFt).

A widely-applied variant, simply termed interaction 
fingerprint (IFP) was introduced by Marcou and Rognan 
[6], containing seven interactions per residue. A marked 
difference between SIFt and IFP is that IFP differentiates 
aromatic interactions by their orientations (face-to-face 
vs. edge-to-face), and charged interactions by the specific 
charge distribution (i.e. cation on the ligand vs. anion 
on the ligand). Furthermore, IFPs can be configured to 
include less common interaction types, such as weak 
H-bonds or cation–π interactions. Later, the same group 
has introduced triplet interaction fingerprints (TIFPs), 
which encodes triplets of interaction points to a fixed 
length of 210 bits [7].

Mpamhanga et  al. [8] have introduced three types 
of interaction fingerprints in their work in 2006, out of 
which the one termed CHIF is probably the most promi-
nent. Atom-pairs based interaction fingerprint (APIF) is 
a variant implemented by Pérez-Nueno et  al. [9] in the 
MOE SVL scripting language [10]. APIF accounts for the 
relative positions of pairs of interactions (based on their 

binned distances) and stores them in a count-based fin-
gerprint with a fixed length (294 bits).

Da and Kireev [11] have introduced SPLIF (Structural 
protein–ligand interaction fingerprints), whose main 
difference with respect to SIFt is that the interactions 
are encoded only implicitly by encoding the interacting 
ligand and protein fragments (whereas in SIFt the inter-
action type explicitly defines the given bit in the bit-
string). In the same year, Sato and Hirokawa [12] have 
introduced another approach called PLIF (protein–ligand 
interaction fingerprints), which relies on the per-residue 
identification of the number of interacting atoms (with 
the ligand). To our knowledge, the most recent novel 
interaction fingerprint implementation is the PADIF 
(Protein per atom score contributions derived interac-
tion fingerprint) approach of Jasper et  al. [13]. PADIF 
incorporates the strengths of the different interactions by 
exploiting the per atom score contributions of the protein 
atoms, which are calculated for each pose during dock-
ing with GOLD, or with any other scoring function that 
can output atom contributions [14]. As a consequence, 
PADIF is an atom-based interaction fingerprint.

Interaction fingerprints have been applied numerous 
times to complement docking scores in virtual screen-
ing campaigns, e.g. for the discovery of GPCR (G-protein 
coupled receptor) ligands [15] or kinase inhibitors [16]. In 
more complex examples, they have been applied for inter-
preting activity landscapes [17], for training machine learn-
ing models [18], and for identifying covalently targetable 
cysteine residues in the human kinome [19]. Additionally, 
interaction fingerprints are applied to support large, spe-
cialized structural databases, such as GPCRdb (for GPCRs) 
[20], KLIFS (for kinases) [21, 22] or PDEstrian (for phos-
phodiesterases) [23].

Table 1  Summary of  the  bit definitions of  the  modified SIFt implemented in  the  Schrödinger Suite and  applied in  this 
work

Abbreviation Short definition Description

Any Any contact A ligand atom is within the required distance of a receptor atom

BB Backbone interaction A ligand atom is within the required distance of a receptor backbone atom

SC Sidechain interaction A ligand atom is within the required distance of a receptor side chain atom

Pol Polar residues A ligand atom is within the required distance of an atom in a polar residue of the receptor (ARG, ASP, GLU, 
HIS, ASN, GLN, LYS, SER, THR, ARN, ASH, GLH, HID, HIE, LYN)

Hyd Hydrophobic residues A ligand atom is within the required distance of an atom in a hydrophobic residue of the receptor (PHE, 
LEU, ILE, TYR, TRP, VAL, MET, PRO, CYS, ALA, CYX)

HBA Hydrogen bond acceptor The ligand forms a hydrogen bond with an acceptor in a receptor residue

HBD Hydrogen bond donor The ligand forms a hydrogen bond with a donor in a receptor residue

Aro Aromatic residue A ligand atom is within the required distance of an atom in an aromatic residue of the receptor (PHE, TYR, 
TRP, TYO)

Chg Charged residue A ligand atom is within the required distance of an atom in a charged residue of the receptor (ARG, ASP, 
GLU, LYS, HIP, CYT, SRO, TYO, THO)
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Binary similarity measures are applied in various scien-
tific fields to compare binary and continuous data vectors. 
To our knowledge the most comprehensive collection of 
similarity measures was published by Todeschini et al. [24], 
listing 51 similarity measures (out of which seven have 
been shown to perfectly correlate with others).

For binary data (e.g. for two interaction fingerprints), 
similarity measures are calculated from the contingency 
table (or confusion matrix) shown in Table  2, containing 
the frequencies of four events: (a) 1–1 (interaction present 
in both complexes), (b) 1–0 (interaction present in the first 
complex and absent from the second), (c) 0–1 (interaction 
absent from the first complex but present in the second), 
and (d) 0–0 (interaction absent from both complexes). 
With these parameters (along with the fingerprint length 
p), various similarity measures can be calculated, as exem-
plified here:

In the examples, SM is the simplest similarity coefficient 
(called simple matching, or Sokal–Michener), JT corre-
sponds to the Jaccard–Tanimoto coefficient (the de facto 
standard of the cheminformatics community), and BUB 
is the Baroni–Urbani–Buser coefficient that was sug-
gested in our recent work as a good similarity metric for 
metabolomics fingerprints [25].

The values of similarity measures usually range from 0 
to 1 (as for the above examples), but many of them (e.g. 
correlation-based measures) are defined to other ranges, 
such as − 1 to + 1. Such measures can be rescaled to the 
range [0, 1], based on this formula:

where α and β are the scaling parameters compiled by 
Todeschini et al. [24]. Similarity measures can be catego-
rized according to symmetricity and metricity. A simi-
larity coefficient is called symmetric (S) if it considers d 
(number of common off bits) equally to a (number of 
common on bits), intermediate (I) if d is underweighted 
with respect to a, or asymmetric (A) if d is not considered 
at all. Additionally, the work of Todeschini et al. denotes 

(1)SM =
a+ d

p

(2)JT =
a

a+ b+ c

(3)BUB =

√
ad + a

√
ad + a+ b+ c

(4)s′ =
s + α

β

correlation-based metrics with the letter Q. Metric-
ity specifies whether a similarity measure can be trans-
formed into a metric distance, i.e. one that complies with 
the criteria of non-negativity, identity of indiscernible, 
symmetry (dA,B = dB,A) and triangle inequality. These can 
be called (similarity) metrics and are denoted with M, 
while non-metric measures are denoted with N. In this 
work, we have adapted the abbreviations introduced by 
Todeschini et al. [24].

In our related earlier works, we have confirmed the 
choice of the Tanimoto coefficient for molecular finger-
prints (by a comparison of eight commonly available 
measures) [26], and more recently we have suggested the 
Baroni–Urbani–Buser (BUB) and Hawkins–Dotson (HD) 
coefficients for metabolomic fingerprints [25]. We should 
note however, that due to the highly different data struc-
ture, these conclusions are not transferrable to interac-
tion fingerprints (or other fingerprint types).

In this work, our goals were to (1) compare and rank 
these 44 similarity measures for their use with interaction 
fingerprint data, and (2) to dissect the interaction fin-
gerprints and investigate how changes in the data struc-
ture affect the ranking of similarity coefficients. Also, 
we aimed to answer some specific questions considering 
interaction fingerprints, regarding e.g. the usefulness of 
IFP filtering schemes (i.e. exclusion of certain bit posi-
tions or blocks), or of general interaction definitions (e.g. 
“Any contact”). We note here that we use the abbrevia-
tion IFP throughout this work to refer to interaction fin-
gerprints in general, not to the specific fingerprinting 
method of Marcou and Rognan [6]. (The specific method 
we used here is a modified version of SIFt [2], imple-
mented in the Schrödinger Suite [4].)

Methods
Datasets
Ten protein targets were applied for the comparison, 
which were selected from the DUD datasets [27] based 
on the following criteria: (1) a crystal structure of the 

Table 2  Confusion matrix for  a  pair of  interaction 
fingerprints, containing the  frequencies of  common 
on  bits (a), common off  bits (d), and  exclusive on  bits 
for Complex 1 (b) and Complex 2 (c)

p = a + b + c + d Complex 2

1 (interaction 
present)

0 
(interaction 
absent)

Complex 1

1 (interaction present) a b

0 (interaction absent) c d
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human protein from the PDB database must be avail-
able, (2) the co-crystallized ligand should have a reported 
bioactivity data (if more structures were available, the 
one with the most active ligand was selected), and (3) we 
strived to compile a set of proteins that are as diverse as 
possible. The applied protein targets and ligand sets are 
summarized in Table 3.

The case studies correspond to ten virtual screening 
scenarios, where IFPs are used for retrieving the active 
molecules from among the chemically similar, but not 
active decoy compounds. A standard tool for evaluat-
ing virtual screenings is the area under the receiver 
operating characteristic curve (ROC AUC, or AUC for 
even shorter). The AUC can take values between 0 and 
1, and corresponds to the probability of ranking a ran-
domly selected active compound higher than a randomly 
selected inactive compound (as a consequence, an AUC 
value of 0.5 corresponds to random ranking) [28]. In this 
work, we have used AUC values as a first approach to 
evaluating the various IFP-similarity measure combina-
tions, followed by a more detailed statistical analysis, as 
explained below.

Generation of interaction fingerprints
All the preprocessing procedures for the protein tar-
gets and ligands were carried out with the relevant 
Schrödinger software (LigPrep, Protein Preparation Wiz-
ard etc.) [29]. Standard (default) protocols were used 
for grid generation and ligand docking (Glide) [30, 31]. 
The IFPs were also generated with a Schrödinger mod-
ule based on the docked poses, and contained by default 
all of the nine interactions listed in Table  1. To study 
the effects of the more general interaction definitions 
(bits), we have generated two more sets of IFPs, where 
we have omitted (1) the Any Contact (Any), and (2) the 
Any Contact (Any), Backbone Interaction (BB), and Side-
chain Interaction (SC) definitions. We have labeled the 

resulting IFPs ALL (original), WO1 (without Any), WO3 
(without Any, BB and SC).

Additionally, we have implemented two IFP filtering 
rules to get rid of the large set of bits in the IFPs, which 
are consistently 0 across the whole ligand set. Briefly, 
residue-based filtering (RES) excludes any residue from 
the IFP that is found to be consistently non-interacting 
across the whole dataset, while interaction-based filter-
ing (INTS) additionally omits any individual interaction 
that is never established in the whole dataset. The filter-
ing rules are summarized and illustrated in Fig. 1.

Similarity metrics
We have implemented a Python module (FPKit) to calcu-
late 44 similarity measures (collected by Todeschini et al. 
[24]) on plain bitstrings. The definitions of these similar-
ity measures can be found in the original publication of 
Todeschini et al., and as a supplement to our recent (open 
access) article on metabolomic profiles [25]. Those meas-
ures that do not, by definition, produce values in the [0, 
1] range are scaled with the α and β scaling parameters, 
published together with the definitions (see also Eq. 4). In 
some instances, we needed to correct some of these scal-
ing parameters and implement additional checks to avoid 
division-by-zero errors: these are summarized in Addi-
tional file 1. The Python module additionally contains the 
implemented filtering rules, and is available at: https​://
githu​b.com/david​bajus​z/fpkit​.

Statistical analysis
Sum of ranking differences (implemented as a Micro-
soft Excel VBA macro) was used for the evaluation 
of the similarity values in each of the ten datasets. The 
similarity measures were scaled with Eq.  4 using the α 
and β parameters published in [24] (and corrected by us 
in a few cases, see Additional file 1), but even after scal-
ing, some of the measures produced similarity values in 

Table 3  Summary of the applied protein targets and ligand sets

Short name Name Uniprot Protein family PDB code No. actives No. inactives

1 ACE Angiotensin-converting enzyme P12821 Hydrolase 4CA5 49 1727

2 ACHE Acetylcholine esterase P22303 Hydrolase 4M0F 105 3708

3 ALR2 Aldose reductase P15121 Oxidoreductase 4XZH 26 917

4 AR Androgen receptor agonists P10275 Transcription factor 4OEA 64 2234

5 CDK2 Cyclin dependent kinase 2 P24941 Protein kinase 1AQ1 48 1763

6 COMT Catechol O-methyltransferase P21964 Transferase 3BWM 11 428

7 ER Estrogen receptor antagonists P03372 Nuclear receptor 3ERT 39 1388

8 PARP Poly(ADP-ribose) polymerase P09874 Transferase 4PJT 33 1175

9 SRC Tyrosine kinase SRC P12931 Protein kinase 2H8H 155 5784

10 VEGFr2 Vascular endothelial growth factor 
receptor kinase

P35968 Transferase 3VHE 71 2617

https://github.com/davidbajusz/fpkit
https://github.com/davidbajusz/fpkit
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highly different ranges between 0 and 1, therefore addi-
tional data pretreatment was used to obtain a balanced 
set of data, which can be compared in a fair way. The fol-
lowing options were considered for data pretreatment: 
autoscaling (a.k.a. standardization), rank transformation 
(i.e. assigning ranks to the values according to increas-
ing magnitude) and range scaling (sometimes wrongly 
termed interval scaling). The workflow for generating 
the input matrices for SRD analysis is presented in Fig. 2. 
Ninety variants of SRD input matrices were calculated 
based on the different bit selections and filtering rules 
for each protein target. The input data matrices for SRD 
analysis contained the similarity values of the molecules, 
calculated with each of the 44 similarity measures.

SRD is a novel algorithm based on the calculation of 
the differences between the object-wise ranks produced 
by a vector (corresponding to a method, model, similar-
ity metric, etc.), as compared to a reference vector [32, 
33]. The reference can be experimental values as a gold 
standard, or a consensus produced by data fusion, such 
as row-average, minimum or maximum, etc. This is 

related to the basic idea of multicriteria decision making, 
where the objective is to rank the objects simultaneously 
by each criterion: using that terminology, the criteria 
would be the various similarity measures in this case. The 
basic steps of the protocol are the following: (1) ranking 
the samples (here, ligands) in their order of magnitude 
by each column vector (similarity measure), (2) for each 
sample (ligand), calculating the differences between the 
ranks produced by each similarity measure and the ref-
erence, and (3) summing up the absolute values of the 
differences for each similarity measure. The resulting 
sums are called SRD values and can be used to compare 
the similarity measures: the smaller the SRD value, the 
closer the measure is to the reference (in terms of ranking 
behavior). A detailed animation of the calculation proce-
dure can be found as a supplement to our earlier work 
[26]. The method is validated with cross-validation and a 
randomization test as well. The MS Excel SRD macro is 
freely available for download at: http://aki.ttk.mta.hu/srd

We should note that besides SRD, a number of meth-
ods for the comparison of rankings is reported in the 

Fig. 1  a Docked complex of a small-molecule virtual hit (green sticks) to JAK2 [16]. Potentially interacting residues in the vicinity of the ligand 
are highlighted in red. b Excerpt from the interaction fingerprint of the docked complex. Interacting residues are highlighted in red, while 
non-interacting residues are represented as gray blocks. Inside the red blocks, those interactions are grayed out that cannot be established by 
definition. c Short definition of the SIFt filtering rules implemented in this work. Residue-based filtering (RES) omits any residue that is found to be 
consistently non-interacting across the whole docked dataset. Interaction-based filtering (INTS) additionally omits any individual interaction that is 
not established even once across the whole dataset. The latter includes (but is not restricted to) those interactions that cannot be established by 
definition (grayed-out interactions inside red blocks); for example the “Aromatic” bit will be 0 for any residue that lacks an aromatic ring

http://aki.ttk.mta.hu/srd
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literature, or used routinely by statisticians. Spearman’s 
rank correlation coefficient—probably the most com-
monly used rank-based statistical test—has been com-
pared to SRD in the paper of Héberger and Kollár-Hunek 
[34] as early as 2011, and we have also shown in our 
recent work the more sophisticated discriminatory power 
of SRD as compared to Spearman’s rho [35]. An interest-
ing novel application of SRD is in Post-Pareto optimality 
analysis, where it was clearly shown to be a well-suited 
decision support tool (by ranking the solutions along the 
Pareto front) [36].

More generally: while it is also based on a compari-
son of rankings, the SRD workflow can be clearly distin-
guished from rank-based statistical tests, as it involves 
not one, but three essential steps. The first of these is the 
definition of the reference vector (i.e. reference ranking), 
which—depending of the problem—can be a “gold stand-
ard” (such as experimental values for the comparison 
of computational methods for modeling/predicting the 
same property) or a consensus of the existing (compared) 
methods, produced with a suitable data fusion technique, 
such as average, minimum, maximum, etc. This is again 
problem-dependent, as the reference vector must always 
represent a hypothetical optimum (or ideal) ranking. 
(It may involve more than one data fusion technique, if 
necessary, e.g. in the present work, the hypothetical best 
similarity measure would be one that produces the high-
est possible similarity value for active molecules and the 
lowest possible value for inactives, so our current solu-
tion involved the use of maximum values for actives, and 
minimum values for inactives, see Results section.) Defi-
nition of a reference vector is not part of any rank-based 
statistical test we are aware of.

The second step is the calculation of the distance meas-
ure itself between the reference vector (ranking) and the 
rankings produced by the compared methods (here, simi-
larity measures). In the current implementation of SRD, 
the Manhattan distance is applied: in the case where 
there are no tied ranks, this is identical to another rank-
based distance measure, the Spearman footrule metric 
[37]. Koziol related SRD to another distance measure for 
permutations—namely, the inversion number [38], but 
it has less discriminatory power, and has not found any 
applications yet (to the best of our knowledge).

The third step is the application of a meticulous valida-
tion approach, involving a randomization (permutation) 
test and leave-one-out or leave-many-out cross-valida-
tion. This step instantly provides answers to two impor-
tant questions: whether the SRD values characterizing 
two compared methods (i.e. rankings) are significantly 
different from each other (cross-validation), and whether 
there is any among the compared methods (i.e. rank-
ings) that is not significantly better (i.e. not closer to the 

reference vector) than random rankings (randomization 
test).

The further statistical analysis of SRD values was car-
ried out by factorial analysis of variance (ANOVA). This 
method is based on the comparison of the average values 
for the different groups of samples. The input matrices 
contained the SRD values and several grouping factors 
such as similarity metrics, symmetricity, metricity, bit 
selection and filtering rule. The complete procedure of 
statistical analysis was carried out three times with dif-
ferent pretreatment methods (rank transformation, range 
scaling, autoscaling). STATISTICA 13 (Dell Inc., Tulsa, 
OK, USA) was used for the analysis.

Results and discussion
Comparison based on AUC values
As a first strategy, we have used AUC values for the 10 
datasets as a basis for comparison and analysis. The 
AUC values were calculated with the scikit-learn Python 
package for each dataset and for each of the 44 similar-
ity measures [39]. However, a detailed factorial ANOVA 
analysis revealed that the AUC values are not fit for the 
proper evaluation of similarity metrics, because the 
applied ten protein datasets have very different AUC val-
ues, leading to different means and very high standard 
deviations. In this sense, the AUC values are not sensi-
tive enough to find the most or least consistent similarity 

Fig. 2  Workflow of the input matrix generation and the complete 
protocol of the study



Page 7 of 12Rácz et al. J Cheminform  (2018) 10:48 

measures, when using more than one dataset. Figure  3 
illustrates the big differences between the protein targets 
in terms of AUC values, ranging from excellent classifica-
tion (2H8H and 3ERT, or SRC kinase and estrogen recep-
tor, respectively) to worse than random classification 
(4M0F and 4XZH, or acetylcholine esterase and aldose 
reductase, respectively). There is also no clear consen-
sus regarding the relative performances of the various 
similarity measures, as the shapes of the curves in Fig. 3 
are visibly different (and in some cases display opposite 
trends).

Results based on SRD values
Because of the problem detailed above, we have decided 
to apply the SRD method for the statistical comparison. 
Selecting the reference value (data fusion) was not trivial 
in this particular case, since we have active and inactive 
ligands as well, where the ideal behavior for a similarity 
measure is to produce the highest and the smallest simi-
larity values, respectively. Thus, the reference was defined 
as the minimum or maximum value among the similarity 
values, depending on the activity of the specific ligand (if 

it was active, the row-maximum was used, if it was inac-
tive, then row-minimum was used). The analysis was run 
90 times altogether, corresponding to each possible com-
bination of 10 protein targets, 3 bit selections, and 3 fil-
tering rules.

The original input matrices contained the 44 similar-
ity measures for the different molecules in each case 
study, but the ranges of these measures were sometimes 
very different. For example, values close to 0 were typi-
cal for the Mou (Mountford) similarity, but values close 
to 1 were typical for the Yu1 (Yule) similarity. Obviously, 
in such cases, taking the row minimum as the reference 
value would favor the former, regardless of the ligand 
being active or inactive. Thus, an additional round of data 
pretreatment was essential for the analysis, to provide a 
valid basis of comparison. Autoscaling, range scaling and 
rank transformation were applied for this purpose.

One example of the original plots produced by the 
SRD script can be seen in Additional file  1: Figure S1, 
where the normalized (scaled) SRD values are plotted 
in increasing magnitude and the distribution of random 
SRD rankings (for random numbers) is plotted as a basis 
of comparison.

Fig. 3  Factorial ANOVA with the use of the protein targets and the similarity measures as factors. (AUC values are plotted against the similarity 
metrics.) The protein targets (with PDB codes) are marked with different colors and marks on the plot. Average values (dots) and 95% confidence 
intervals (lines) are shown in each case
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SRD analysis was performed with fivefold cross-val-
idation to every combination of the original parameters 
(bit selection, filtering, scaling) and the results (the SRD 
values) for each similarity measure were collected from 
every dataset (see Fig.  2) for a final factorial ANOVA 
analysis. The collected SRD values for the ten datasets 
(i.e. target proteins) were used together for the further 
ANOVA analysis, to allow us more general conclusions.

First, we have compared the data pretreatment meth-
ods, to select a suitable one for the rest of the analyses. 
The effect of pretreatment was significant according to 
ANOVA, meaning that the results were significantly dif-
ferent for the different scaling options, as seen in Fig. 4. 
For the further analyses, we have chosen to use autoscal-
ing, as range scaling and rank transformation are more 
biased and more sensitive to outliers. Additionally, autos-
caling can be considered as a consensual choice between 
the other two (see Fig. 4).

From this point on, standardized data were used for the 
further ANOVA analyses. The input matrix contained 
a total of 23,760 rows, corresponding to SRD values 
for each possible combination of 44 similarity meas-
ures, three filtering rules, three types of bit selections, 
six cross-validation rounds (fivefold cross-validation, 

including one round using the whole dataset, “All”), and 
ten datasets. (Part of the input matrix can be seen in 
Additional file  1: Table  S1 for the better understanding 
of the ANOVA procedure.) We examined all the possible 
factors: similarity measures (44), bit selections (3), filter-
ing rules (3), symmetricity (4) and metricity (2). With the 
use of these dependent factors, we can conclude whether 
their effects (one by one, or in combination) were signifi-
cant on the α = 0.05 level based on the normalized SRD 
values. In the case of similarity measures the final out-
come can be seen in Fig. 5.

We can observe that there are some measures with very 
high SRD values (i.e. producing very different rankings 
as compared to the reference/consensus method), for 
example RR (Russel–Rao), Mic (Michael) or CT3 (Con-
sonni–Todeschini 3). On the other hand, one can iden-
tify the best measures (i.e. closest to the reference) as SM 
(simple matching) [40], RT (Rogers–Tanimoto) [41], SS2 
(Sokal–Sneath 2) [42], CT1 (Consonni–Todeschini 1), 
CT2 (Consonni–Todeschini 2) [43] or AC (Austin–Col-
well) [44]. These similarity measures are closer to the 
reference and can be recommended for usage. The JT 
(Jaccard–Tanimoto) metric, which is the de facto stand-
ard of cheminformatics (simply called the “Tanimoto 

Fig. 4  Factorial ANOVA with the use of scaling and similarity metrics as factors. Normalized SRD values [%] are plotted against the similarity metrics. 
The different scaling methods are marked with different symbols and lines. (RGS: range scaling, RANK: rank transformation, AUTO: autoscaling.)
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coefficient” in most of the related scientific literature) is 
located relatively close to the reference, but somewhat 
farther than those mentioned above, meaning that the 
SM, RT, SS2, CT1, CT2 and AC metrics could be consid-
ered as viable alternatives of the Tanimoto coefficient.

If we examine the effects of the bit selection and filter-
ing rule together, the ANOVA plot can be seen in Fig. 6. 
Significant differences between the filtering methods and 
the bit selections can be clearly observed. Interaction-
based filtering (INTS) clearly improves the results, and 
so does residue-based filtering (RES) to a smaller extent. 
The differences between the bit selections are also clear: 
omitting the “Any contact” bit (WO1), results in a slight, 
but significant improvement, but omitting the BB and 
SC bits (Backbone and Sidechain interactions) causes 
a serious deterioration of SRD values. In summary, the 
best combination is the use of interaction-based filtering 
(INTS), while omitting the “Any contact” bit.

The similarity measures can be grouped by sym-
metricity and metricity (see Introduction). ANOVA 
plots based on these factors are included in Fig.  7. It 
is clearly seen on Fig.  7a that metric similarity meas-
ures give, on average, much closer results to the ideal 

reference method than non-metric measures. Accord-
ing to Fig. 7b, symmetric and intermediately symmetric 
similarity measures tend to give more consistent results 
with the reference method. Both factors gave statisti-
cally significant differences (at α = 0.05) between the 
groups.

The preference for symmetric measures over asym-
metric ones is somewhat surprising, considering that 
one would expect symmetric measures to be affected by 
the amount of “off” bits (and consequently, the number 
of common “off” bits, d) more than asymmetric ones. 
If we look at the effects of the filtering rules (and there-
fore the amount of “off” bits) on the SRD values of the 
similarity metrics separately (Additional file 1: Figure S2), 
we find that this assumption is confirmed, but only par-
tially: similarity measures, where we can observe major 
differences are Mic (Michael), HD (Hawkins–Dotson), 
Den (Dennis), dis (dispersion), SS4 (Sokal–Sneath 4), Phi 
(Pearson–Heron), Coh (Cohen), Pe1, Pe2 (Peirce), MP 
(Maxwell–Pilliner), and HL (Harris–Lahey). These are 
symmetric and correlation-based coefficients, without 
exception. The associated ANOVA plots are included in 
Additional file 1: Figure S2.

Fig. 5  Factorial ANOVA with the similarity measures as the factor. Average values are marked with blue dots and the blue lines below and above 
the dots denote 95% confidence intervals. Normalized SRD values [%] are plotted against the similarity measures. The red dashed lines are arbitrary 
thresholds defined to select the best few metrics, and to identify the region with the less consistent similarity measures
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Summary and conclusion
In this study forty-four similarity measures were com-
pared based on ten case studies, corresponding to inter-
action fingerprint-based virtual screening scenarios. The 

effects of the applied set of bits (interaction types) and 
filtering rules were studied in detail. The comparison was 
carried out with a novel algorithm, sum of ranking differ-
ences (SRD), coupled with analysis of variance (ANOVA). 

Fig. 6  Factorial ANOVA with the bit selection and the filtering rule as dependent factors. SRD values [%] are plotted against the bit selection 
options. Interaction based filtering (INTS) is marked with a blue dotted line, no filtering (NO) is marked with a red continuous line and residue based 
filtering (RES) is marked with a green dashed line

Fig. 7  The result of ANOVA analysis with metricity (a) and symmetricity (b) as factors. SRD values [%] are plotted against the different groups of 
similarity measures. Average values are plotted and the 95% confidence intervals are indicated with whiskers
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This work complements our earlier comparative studies 
on metabolomic fingerprints [25] and molecular finger-
prints [26].

There are several similarity metrics that are worth con-
sideration as viable alternatives of the popular Jaccard–
Tanimoto coefficient, namely: Sokal–Michener (SM), 
Rogers–Tanimoto (RT), Sokal–Sneath 2 (SS2), Con-
sonni–Todeschini 1 and 2 (CT1, CT2) and Austin–Col-
well (AC). These six similarity measures gave the most 
consistent results with the “ideal” (hypothetical best) ref-
erence method in our evaluations using 10 highly diverse 
protein data sets. We can also conclude that metric simi-
larities are usually more consistent with the reference 
method than non-metric ones. Similarly, symmetric and 
intermediately symmetric measures gave more consistent 
results than asymmetric and correlation-based ones.

Finally, there are important and significant differences 
with regard to the applied bit definitions and filtering 
rules. As a general conclusion, we can recommend omit-
ting the “Any contact” bit definition from IFP-based 
analyses, as it will not deteriorate the results in a virtual 
screening scenario (however, omitting the backbone 
and sidechain interaction bits, BB and SC, is not recom-
mended). Similarly, applying a bit filtering rule, such as 
interaction-based filtering (omitting any interaction that 
is not established even once in the whole dataset) can 
improve the results on average. The open-source Python-
based FPKit (FingerPrint Kit) package applied for IFP 
filtering and similarity calculations is freely available at: 
https​://githu​b.com/david​bajus​z/fpkit​.

List of abbreviations
The abbreviations and definitions of similarity metrics 
can be found in the work of Todeschini et al. [24] and our 
recent open access article on metabolomics fingerprints 
[25].

Bit selections
ALL: all interactions; WO1: all interactions, except “Any 
contact”; WO3: all interactions, except “Any contact”, 
“Backbone interaction” and “Sidechain interaction”.

Filtering rules
INTS: interaction-based filtering; NO: no filtering; RES: 
residue-based filtering.

Statistical methods
ANOVA: analysis of variance; SRD: sum of (absolute) 
ranking differences.

Data pretreatment
AUTO: autoscaling (or standardization); RGS: range 
(interval) scaling; RANK: rank transformation.
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