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Abstract 

The quality of data used for QSAR model derivation is extremely important as it strongly affects the final robustness 
and predictive power of the model. Ambiguous or wrong structures need to be carefully checked, because they lead 
to errors in calculation of descriptors, hence leading to meaningless results. The increasing amounts of data, however, 
have often made it hard to check of very large databases manually. In the light of this, we designed and implemented 
a semi-automated workflow integrating structural data retrieval from several web-based databases, automated 
comparison of these data, chemical structure cleaning, selection and standardization of data into a consistent, ready-
to-use format that can be employed for modeling. The workflow integrates best practices for data curation that have 
been suggested in the recent literature. The workflow has been implemented with the freely available KNIME soft-
ware and is freely available to the cheminformatics community for improvement and application to a broad range of 
chemical datasets.
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Introduction
Quantitative Structure–Activity Relationships (QSARs) 
are statistical models relating a property/activity (i.e. 
endpoint) (e.g. pharmacological effect, or the toxicity, 
physico-chemical or bio-physical properties) of a set 
of chemicals to their structural features, encoded in a 
numerical notation by means of molecular descriptors.

It is intuitive that a QSAR’s predictions cannot be more 
accurate than the original data used for its derivation [1]. 
Therefore, it is of the utmost importance that the dataset 
used for model derivation (i.e. the training set) contains 
high quality data, because any error in chemical struc-
ture or biological data will be implicitly transferred into 
the QSAR model. In these regards, a careful curation and 
selection of input data is essential [2] (Fig. 1).

With the advent of high-throughput technologies, 
increasing numbers of chemical data have been made 
available to the scientific community [3]. Consequently, 
more and more web-based data services and tools have 
emerged, that provide a way to store and constantly 
update information on thousands of different chemi-
cal structures. Examples include ChemIDplus  [4] and 
PubChem [5].

The availability of these open access databases offers 
advantages in terms of chemical structure diversity but 
also disadvantages such as the lack of standardisation [6]. 
The lack of agreement on a unique identifier for chemi-
cal structures sometimes makes it difficult to compare 
and integrate structural data from different sources. 
The International Union of Pure and Applied Chemistry 
(IUPAC) international chemical identifier (InChI) code 
[7] has been proposed as a unique structural format to 
identify and compare chemical structures, e.g. check-
ing for duplicates [8]. This kind of notation is nowadays 
widely accepted and used more and more. However, in 
lots of cases ambiguous identifiers such as the Simplified 
Molecular Input Line Entry System (SMILES), chemical 
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names and chemical abstracts service (CAS) registration 
numbers are still used, especially in older datasets.

Another problem related to the increasing mass of data 
is often the lack of consistent structural and/or biologi-
cal information on the same compound retrieved from 
different sources. It has been reported [9–11] that a sub-
stantial percentage not ignorable of structures in public 
and commercial databases contain errors.

For these reasons, more and more papers in the last 
years have highlighted the importance of a careful inspec-
tion and curation of chemical structures to derive QSAR 
models [2, 11–14]. The inclusion of ambiguous or wrong 
structures will lead to errors in the calculation of descrip-
tors [15] and, consequently, to meaningless QSARs [14].

Manual inspection of large chemical datasets is impos-
sible in the majority of cases, because they often include 
hundreds or even thousands of different chemical struc-
tures. The use of automated or semi-automated methods 
for data retrieval, curation and standardization is highly 
advisable [13].

At present, however, only few automated methods 
are available to the scientific community, most of them 
addressing only some of the above-mentioned aspects 
(data retrieval, curation, standardization).

The literature still lacks a unified and organized proto-
col to prepare and curate compound data for QSAR mod-
eling, even though this need has been highlighted several 
times [2, 13]. Here we present a new semi-automated 
procedure to support scientists in data preparation for 
modeling purposes. The procedure addresses all three 
steps of (1) data retrieval, (2) data curation and (3) stand-
ardization of chemical structures. Data (i.e., SMILES) 
was automatically retrieved from different, orthogonal 
web-based databases, using two widely used identifiers, 
i.e. chemical name and CAS registration number. The use 
of non-redundant sources is essential because ensures an 
unbiased comparison of retrieved information [13].

Records were scored based on the coherence of infor-
mation retrieved from different web sources. Top scored 
records were then curated. This includes removal of 
inorganic and organometallic compounds and mixtures, 

neutralization of salts (but maintaining the information 
about the counterions in a separate attribute), removal of 
duplicates (and checking for tautomeric forms). Finally, 
the resulting SMILES are converted to a standardized 
format, yielding ready-to-use data for the development of 
QSARs.

The entire workflow was implemented in KNIME (ver-
sion 3.4) [16] and made freely available to the chemin-
formatic community to use and improve. The workflow 
is dedicated to the structural checking of data, making 
it suitable for application to different types of chemical 
datasets, regardless of the endpoint considered.

Materials and methods
Description of the database
To asses the efficiency of the workflow, it was applied to 
three datasets available in the literature, covering differ-
ent chemical spaces. The first dataset was compiled by 
Obach et  al.  [17] and includes 670 drugs together with 
experimental intravenous data for some relevant phar-
macokinetic parameters. For each compound two identi-
fiers, i.e. chemical name and CAS number, were provided 
and used as input for the KNIME workflow.

The second dataset was the SIN-list compiled by 
ChemSec [18]. It includes data for 913 industrial chemi-
cals identified by ChemSec as substances of very high 
concern, based on the criteria for these defined by arti-
cle 57 of REACH (EC [19]). These include carcinogens, 
mutagens and repro-toxic substances; persistent, bio-
accumulative and toxic substances; substances of “equiv-
alent concern” of these two categories (e.g. endocrine 
disruptors).

The third dataset was the EPISuite™ water solubility 
dataset. It includes 5761 compounds with CAS number 
and chemical name. This dataset was used by US EPA to 
develop the WSKOWWIN v 1.42 model to estimate the 
water solubility (https​://www.epa.gov/tsca-scree​ning-
tools​/epi-suite​tm-estim​ation​-progr​am-inter​face). For 
chemicals included in the three  datasets, CAS numbers 
and chemical names were used for searching SMILES. 
Eleven substances in the SIN List were identified by more 

Fig. 1  Workflow for data curation. Adapted from [2]

https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
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than one CAS number, and only the first was considered 
for searching SMILES.

Description of the workflow
The entire procedure described below was implemented 
as a KNIME workflow (https​://www.knime​.com/) [16], 
which is freely available for download at https​://githu​
b.com/DGada​leta8​8/data_curat​ion_workf​low. A guid-
ance for users explaining how to install and use the 
workflow is also provided at the same link and in the 
Additional file 1. The workflow is depicted in Fig. 2.

Data retrieval
The workflow can retrieve SMILES using both the chemi-
cal name and the CAS registration number. The work-
flow accepts input data from a user supplied tabulated 
file, with columns including the lists of the two identifi-
ers. CAS numbers are preliminarily checked for the pres-
ence of leading zeros and unexpected characters. Zeros 
are  removed, while anomalous characters are flagged 
with a warning. A checksum is also performed on CAS 
numbers to verify their correctness [20].

Chemical names and normalized CAS numbers are 
converted into fixed URLs that are sent to a Representa-
tional State Transfer (REST) service. The REST service 
will automatically make queries to a web service con-
nected to publicly available chemical databases, resolving 

chemical identifiers to SMILES. In the present workflow, 
four services are used:

•	 Chemical Identifier Resolver (CIR) from CADD 
Group Chemoinformatics Tools and User Services 
(CACTUS) (https​://cactu​s.nci.nih.gov/chemi​cal/
struc​ture) provided by the National Cancer Institute 
(NCI) [21];

•	 CompTox Chemistry Dashboard [22] (https​://compt​
ox.epa.gov/dashb​oard) from the U.S. Environmental 
Protection Agency (EPA) integrating DSSTox (https​
://www.epa.gov/chemi​cal-resea​rch/distr​ibute​d-struc​
ture-searc​hable​-toxic​ity-dssto​x-datab​ase), ACToR, 
ToxCast (https​://www.epa.gov/chemi​cal-resea​rch/
toxic​ity-forec​astin​g), EDSP21 (https​://actor​.epa.gov/
edsp2​1/) and CPCat (https​://actor​.epa.gov/cpcat​/
faces​/home.xhtml​) chemistry resources;

•	 PubChem (https​://pubch​em.ncbi.nlm.nih.gov/#) [4];
•	 ChemIDPlus (https​://chem.nlm.nih.gov/chemi​

dplus​/) provided by the National Institute of Health 
(NIH) [5].

CIR and CompTox services are employed in a first run of 
the workflow to retrieve SMILES for all the input chemi-
cals using names and CAS numbers as queries. In the 
second part of the workflow, records showing incongru-
ent information from the first two databases are checked 

Fig. 2  Representation of the KNIME workflow for data retrieval and curation

https://www.knime.com/
https://github.com/DGadaleta88/data_curation_workflow
https://github.com/DGadaleta88/data_curation_workflow
https://cactus.nci.nih.gov/chemical/structure
https://cactus.nci.nih.gov/chemical/structure
https://comptox.epa.gov/dashboard
https://comptox.epa.gov/dashboard
https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database
https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database
https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database
https://www.epa.gov/chemical-research/toxicity-forecasting
https://www.epa.gov/chemical-research/toxicity-forecasting
https://actor.epa.gov/edsp21/
https://actor.epa.gov/edsp21/
https://actor.epa.gov/cpcat/faces/home.xhtml
https://actor.epa.gov/cpcat/faces/home.xhtml
https://pubchem.ncbi.nlm.nih.gov/#
https://chem.nlm.nih.gov/chemidplus/
https://chem.nlm.nih.gov/chemidplus/
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on PubChem and ChemIDPlus, as explained in “Manual 
check” section.

Structural data cleaning
In the first part of the workflow up to four SMILES are 
recovered for each record from two chemical data-
bases (CIR and CompTox) using chemical names and 
CAS numbers as identifiers. A preliminary step to raise 
the quality of retrieved data consists in identifying and 
removing the fraction of data that cannot be appropri-
ately handled by the majority of modeling softwares, such 
as inorganic and organometallic compounds, isomeric 
mixtures and data related to mixtures of chemicals. The 
remaining structures need to be treated appropriately, for 
example salts are neutralized and counterions eliminated 
[2, 13]. In this case, the information about the presence of 
a salt and the counterions eliminated are maintained as a 
separate attribute (as described below). This means that 
the user can retrieve this information when necessary.

All these operations are done in the workflow using 
publicly available nodes from the Chemical Developmen-
tal Kit (CDK) (https​://cdk.githu​b.io/) (version 1.5.600) 
and RDKit (http://www.rdkit​.org/) (version 3.2.3) tool-
kits, together with standard KNIME cheminformatics 
nodes.

In case of unconnected structures, such as salts, coun-
terions are separated from the main molecule (identified 
as the one with the highest molecular weight) with the 
CDK connectivity node. After this, the main molecule 
is converted to the neutral form when possible, using 
the RDKit Structure Normalizer node. A flag is added to 
indicate when neutralization of chemicals was successful, 
or when errors arose in the neutralization. Another flag 
indicates the presence of metallic or organic counterions. 
These operations are done on all the SMILES retrieved 
from the various web sources. The information related 
to the original SMILES, the neutralized form and each 
counterion are stored in the workflow.

Characters encoding stereoisomerism (@; \; /) are 
removed because this information is usually not relevant 
for classical QSAR derivation (that works in 2D). Chemi-
cals undergoing this operation are flagged accordingly.

SMILES are  checked for the presence of tautom-
ers. This is done to avoid apparent inconsistency based 
only on differences in the tautomeric form of analogous 
chemicals [23]. InChI [24] are derived from each SMILES 
using the RDKit to InChI node and employed to check 
tautomers. InChI is a unique identifier that allows to 
univocally identifies a given chemical. In the same way, 
identical substances always receive the same label (under 
the same labeling conditions). This is achieved through a 
well-defined procedure of canonical numbering of atoms.

An InChI is made of a series of layers, i.e. charac-
ter sequences starting with a forward slash. Each layer 
encodes specific information for a given chemical, such 
as the empirical formula, stereochemistry and isotopic 
mass of atoms. The last layer lists the exact position of 
tautomeric hydrogens [24]. Two stereoisomeric forms of 
the same chemicals share the same InChI, except for the 
last layer. For this reason, the first layers of InchI were 
used to compare different SMILES for a given record. 
Inconsistencies between SMILES generating InChI codes 
analogous for the first layers are results of different tau-
tomeric representations and are considered equal in the 
subsequent steps of the procedure.

In the second part of the workflow compounds that 
passed the selection procedure (see “Data scoring and 
selection”) are checked for the presence of unusual ele-
ments (i.e. those different from H, C, N, O, F, Br, I, Cl, P, 
S) with an element filter node by CDK extension. Those, 
together with inorganic compounds, are removed from 
the final list of chemicals.

Chemical names are checked for keywords flagging for 
not univocal or problematic structures (metabolites, for-
mulations, mixtures, degradates, reaction masses/prod-
ucts, products, isomers, polymers, derivatives, chemical 
substances of unknown or variable composition, complex 
reaction products and biological materials (UVCBs)) and 
flagged accordingly. Mixtures, reaction masses/products, 
UVCBs and polymers are removed because the relative 
endpoint values often refer to multiple chemicals that 
should not be considered for modeling purposes. The 
remaining cases are moved to a list of chemicals need-
ing manual checking, while isomeric mixtures are kept 
because stereoisomery has already been stripped in the 
first steps of the procedure (see above).

Data scoring and selection
The equal (i.e., consistent) (E), different (i.e., incongruent) 
(D) and missing (M) SMILES are counted for each record. 
Comparison is made on the first layers of InChI codes 
directly generated from the retrieved SMILES. InChI are 
particularly suitable to perform this comparison because, 
unlike SMILES, they identify a structure univocally, also 
avoiding inconsistencies caused by different tautomeric 
representation of the same compound. These counts are 
used to compute a score for each record. Based on the 
level of incongruence among SMILES, records with lower 
scores are rejected or require manual checking.

The score is calculated based on Eq. (1):

If D is greater than E for a record, the score is forced to 
zero. The final score ranged from four (all the SMILES 
are congruent) to zero. In addition, the score is forced to 

(1)Score = E − (D · 0.2)

https://cdk.github.io/
http://www.rdkit.org/
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zero when the two SMILES from the CAS lookup (from 
CIR and CompTox) are not equal. The CAS number is 
usually a more reliable identifier than the chemical name, 
because it is less affected by typos and syntax errors. This 
means, incongruencies in SMILES retrieved from CAS 
are more serious than those in SMILES from chemical 
names. A high final score represents a proof-of-evidence 
of the real match existing between the retrieved structure 
and the identifiers provided as input.

Based on this final score, records are divided into 
Maintain (Ma), Check (C) and Reject (R).

Ma chemicals (Score ≥ 3). These have enough concord-
ant information to be included in the final curated list of 
chemicals. Records with Score = 4 (four equal SMILES) 
have maximum reliability, those with Score = 3 (three 
equal, one missing SMILES) have medium reliability.

R chemicals (Score = 0). These have highly discordant 
or totally missing information, or belong to class of com-
pounds that typically are not considered for modeling 
(e.g. inorganic, mixtures, complexes. See “Structural data 
cleaning” section). These compounds are no longer con-
sidered for inclusion in the final dataset.

C chemicals (Score < 3) require further assess-
ment based on the source of the missing/incongruent 
information:

•	 SMILES from Name are missing both from CIR and 
CompTox. In this case, the name reported in the 
input may contain some typos, or it is an unused syn-
onym. The consistence of the chemical name must be 
checked and at least another confirmation of SMILES 
obtained from the chemical name should be searched 
in other databases.

•	 Only one SMILES is retrieved and the other three are 
missing. In this case, at least two more concordant 
SMILES are required from two new different data-
bases.

•	 Two SMILES are concordant but two are missing, or 
three SMILES are concordant but one is different. In 
this case, at least one confirmation should be found 
from other databases.

Manual check
C records needing only a check of the chemical name 
were automatically verified on PubChem REST Service 
(PUG) (https​://pubch​emdoc​s.ncbi.nlm.nih.gov/pug-
rest), as described at “Data retrieval”.  The CAS number 
was used as input to retrieve all possible synonyms for 
the chemical included in PubChem. If the input chemi-
cal name matches one of the synonyms in the list, the 
consistency between Name and CAS is confirmed and 
the record is moved from C to Ma. Otherwise, the name 

must be further checked manually. The list of synonyms 
retrieved from PubChem is maintained in the prelimi-
nary input document generated by the workflow, in order 
to facilitate visual inspection of names.

For C records requiring one or two confirmations of 
the SMILES retrieved in CIR or CompTox, automated 
retrieval of SMILES is done on PubChem and ChemID 
starting from both CAS number and Name. The entire 
procedure already performed for SMILES retrieved from 
CompTox and CIR is repeated (removal of counterions, 
neutralization, check for tautomers, normalization of 
SMILES, scoring based on the count of concordant evi-
dence). Retrieved structures are compared with those 
retrieved by CompTox and/or CACTUS. If enough 
confirmations are collected, the record is moved to M 
chemicals.

Chemicals that fail the automated check need to be 
verified manually. The workflow produces a preliminary 
output document listing the chemicals for which it was 
not possible to find confirmation and that are likely to 
be excluded. Possible sources for the manual web check 
should be different from the databases used in the proce-
dure described (e.g., ChEMBL [25], ZINC [26], ChemSpi-
der [27], DrugBank [28]), supplier/distributor websites, 
public dossiers from agencies or structure repositories for 
specific chemicals (e.g. repositories of drug compounds).

An empty field in the preliminary document should be 
filled by the user with the number of new confirmations 
found. Then the updated document is loaded again in 
the workflow for the last part of the procedure. Checked 
chemicals are rescored based on the number of new con-
firmations. If there are enough confirmations, chemicals 
are moved to Ma, otherwise they are rejected.

Table  1 reports the possible combinations of congru-
ent, incongruent and missing structures from the four 
different combinations of sources and identifiers (Name/
CIR, Name/CompTox, CAS/CIR and CAS/CompTox), 
the score assigned and the any manual check required. 
Figure 3 shows the entire scoring scheme. 

Structural normalization
The final list of neutralized SMILES is converted into 
a standardized QSAR-ready format. The OpenBabel 
KNIME implementation [29] is used to generate Canoni-
cal SMILES [30]. In addition, a kekulizer node from 
RDKit extension is used to solve ambiguous aromatic 
structures and generate SMILES with explicit aroma-
ticity. Counterions of SMILES from different sources 
are compared, and differences are flagged. At this stage 
duplicates in the list are detected and removed with a 
check on the first three layers of InChI generated from 
SMILES.

https://pubchemdocs.ncbi.nlm.nih.gov/pug-rest
https://pubchemdocs.ncbi.nlm.nih.gov/pug-rest
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Output
The workflow produces an *.xlsx document comprising 
various sheets, each giving different information:

(a)	 Maintained: this includes (i) a new progressive ID 
for chemicals; (ii) all  the original SMILES; (iii) the 
neutralized SMILES with explicit aromaticity; (iv) 
the Open Babel neutralized Canonical SMILES; 
(v) the number of duplicates for the record in the 
original dataset; (vi) the list of names (with occur-
rences) assigned to the original records; (vi) the list 
of CAS_NOs (with occurrences) assigned to the 
original records; (vii) reliability (High or Medium); 
(viii) list of warnings.

(b)	 Rejected: this includes (i) ID; (ii) name; (iii) CAS_
NO; (iv) a collection of warnings indicating the rea-
son for removal of the record.

(c)	 Manual Check: list of compounds to be manually 
searched on the web. This includes (i) ID; (ii) name; 
(iii) CAS_NO; (iv) neutralized SMILES collected 
from CIR and CompTox; (v) number of Equal, Dif-
ferent and Missing SMILES; (vi) a specification of 
the information that must be searched on the web 
(verify consistency of the name, search for one or 
two further confirmations); (vii) a list of synonyms 
retrieved from PubChem for a preliminary name 
verification; (viii) an empty field to fill with the 
number of confirmations.

(d)	 Full output: this summarizes the information 
reported above for all the chemicals.

(e)	 Neutralized and Counterions: this includes (i) ID; 
(ii) CAS_NO; (iii) original SMILES; (iv) neutralized 
SMILES; (v) counterions retrieved from CIR and 
CompTox using Name and CAS_NO as identifier; 
(vi) warnings on counterions.

(f )	 PubChem_ChemID_check: this includes the same 
information as above, that results from the auto-
mated check on PubChem and ChemID.

(g)	 Summary: this reports the number of Maintained 
(including and excluding duplicates, with details on 
reliability), web check and rejected chemicals.

(h)	 Counterions_CompTox/CIR_CAS/Name: four 
parts that report: (i) original SMILES; (ii) SMILES 
stripped of counterions; (iii) neutralized SMILES; 
(iv) list of counterions; (v) MW of molecule and 
counterions; (vi) possible warnings for neutraliza-
tion.

After the user check, the .xlsx file is reloaded in the work-
flow to include in the final output all the chemicals pass-
ing manual inspection. A series of new sheets are added 
to the final output, reporting the same information as 
above but on the entire dataset.

An example of output generated by the workflow for 
Obach dataset,   SIN List from ChemSec and EPISuite™ 
solubility dataset analysed in this article (see “Description 

Table 1  Case series and corresponding scores

For each possible combination of equal (E), different (D) and missing (M) SMILES, the table report the assigned score, the final check [maintain (Ma), reject (R) and 
manual check (C)] and instruction for checking C chemicals

E D M Note Score Modified score Check Manual check notes

4 0 0 4.0 4.0 Ma

3 0 1 3.0 3.0 Ma

3 1 0 CAS_CIR = CAS_CompTox 2.8 2.8 W Verify name

3 1 0 CAS_CIR ≠ CAS_CompTox 2.8 0.0 R

2 0 2 SMILES from name are both missing 2.0 2.0 C Verify name

2 0 2 The two SMILES from one source are both missing 2.0 2.0 C Search for at least one confirmation

2 0 2 One SMILES from CAS and one SMILES from name 
are missing from different sources

2.0 2.0 C Search for at least one confirmation

2 0 2 SMILES from CAS are both missing 2.0 2.0 C Verify correctness of CAS; search for 
at least one confirmation

2 1 1 CAS_CIR = CAS_CompTox 1.8 1.8 C Verify name

2 1 1 CAS_CIR ≠ CAS_CompTox 1.8 0.0 E

1 0 3 1.0 1.0 C Search for at least two confirmations

0 0 4 0.0 0.0 R

2 2 0 1.6 0.0 R

0 2 2 − 0.4 0.0 R

0 3 1 − 0.6 0.0 R

0 4 0 − 0.8 0.0 R
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of the  database”) are reported in the Additional file  2, 
Additional file 3, Additional file 4.

Results and discussion
We presented a new semi-automated procedure to 
retrieve structural data (SMILES) using different chem-
ical identifiers as input (CAS number and chemical 
names). However, this is not a simple retrieving pro-
cedure, as a series of steps for structural data curation 
have also been implemented. The final output of the 
workflow is a curated QSAR-ready dataset comprising 
only reliable and high-quality data that can be used for 

modeling exercises. The workflow also integrates steps 
aimed at identifying errors and incongruences in the 
data. Because it is often impossible to check very large 
datasets manually because of prohibitive time require-
ments, this check has been partially automated in the 
workflow.

One example of quality checking is the verification of 
the consistence of chemical structures. This can be done 
automatically by retrieving and comparing structures 
from different publicly available datasets. Several authors 
[9, 11] have highlighted the presence of random human 
errors committed during compilation of public datasets. 
Retrieval of information from several sources is an easy 
way to recognize these errors. Using of the same chemi-
cal identifier (e.g. CAS, chemical name) to mine differ-
ent datasets should lead to the same chemical structure. 
If the same structure is always retrieved using different 
identifiers from several, orthogonal databases, it is highly 
plausible that a real match exist between the final struc-
ture, the CAS number and the chemical name, and that 
no errors occurred in the source databases. Different 
results should be interpreted as an error in one or more 
of the datasets queried.

This automated identification of errors greatly 
improves the quality of the starting data. Quality is fur-
ther gradually increased through various levels of struc-
tural data curation. These involve the removal of a part 
of the data that cannot be appropriately handled by the 
majority of modeling softwares, such as inorganic, orga-
nometallic compounds and mixtures of chemicals. The 
neutralization of ionized structures and the elimination 
of counterions are other commonly applied procedures 
[2] that have been implemented in the workflow.

In the last part of the curation procedure, the work-
flow provides a form of standardization of chemical 
structures in order to make them ready to use in mod-
elling. Standardization of the structures is of the utmost 
importance because it has direct consequences on com-
puted chemical descriptors. If two chemicals are similar, 
but are standardized in different ways, values for some 
descriptors may be different, resulting in errors in the 
model [14]. A classic example is the nitro group, which 
can be represented in several ways. In this specific case, 
descriptors based on the count of this particular func-
tional group may lead to different results depending on 
the graphical representation of the group [13, 14]. Tau-
tomeric forms [23] are another common issue that justi-
fies the need for a rigorous standardization process. The 
selection of one form instead of another leads to modifi-
cations in connectivities and hydrogen positions that may 
produce differences in some of the molecular descriptors 
based on these properties.

Fig. 3  Workflow describing the scoring scheme of chemicals in the 
data curation procedure. E equal, D different
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Another common error caused by the lack of stand-
ardization is the presence of replicate structures [8]. This 
is mainly due to the fact that a same compound can be 
characterized by different notations or different struc-
tural representations (e.g., the same compound can be 
represented by different SMILES notations).

Aromaticity also needs standardization, particularly 
for some problematic structures, such as five-term aro-
matic compounds or aromatic rings with branched keto-
groups. Public datasets, including those considered in 
the workflow, often include misleading representations 
of chemicals, including chemotypes that lead to errors 
in the calculation of descriptors related to the number of 
aromatic atoms and/or aromatic bonds in the molecule. 
The implementation of a kekulizer node in the workflow 
can handle this kind of issue. The node can explicate the 
aromaticity of problematic chemotypes, and univocally 
represent some atoms that are often wrongly reported as 
aromatic in SMILES, on account of these misleading rep-
resentations (Fig. 4). 

The authors intentionally defined the procedure as 
“semi-automated”, because there are some errors that are 
obvious to a human, but are still not obvious for comput-
ers. A final manual intervention is required to check the 
presence of errors that cannot be identified by a com-
pletely automated procedure. These included, for exam-
ple, typos in chemical names or CAS number.

In order to guide the user in identifying errors that 
went unnoticed in the automated workflow, a series 
of notes and warnings are produced at each step of the 

curation procedure. Some of them are useful to drawn 
attention to steps that are most likely to generate errors. 
An example is the inclusion of flags for the presence of 
organic counterions. Sometimes it is impossible to deter-
mine the real role of a counterion in the biological activ-
ity of a compound. This is particularly true in the case of 
organic counterions with molecular weight similar to the 
main molecule. Here, the record is possibly a mixture of 
several ingredients, and manual deletion of the record is 
recommended, unless the user knows which component 
is responsible for the biological activity [13]. Sometimes 
a counterion is equal to the main molecule. In this case, 
the record is a dimer, and this should be taken into con-
sideration when evaluating the experimental value for the 
record (i.e. influence of the stoichiometry of the record 
on the endpoint value).

In addition, in some cases neutralization of the salts is 
not appropriate for the purpose (e.g. for developing mod-
els for water solubility). For these reasons, the informa-
tion about the counterions eliminated is reported in a 
dedicated sheet. The user can manually verify whether 
the counterion is organic or inorganic, whether it is 
mono or polyatomic, and whether all the structures 
retrieved for the same compound contain the same coun-
terion (e.g. sodium and potassium salts, or sodium salt 
and acidic form).

The main limitation in formalizing a standard data 
curation procedure is the absence of a single tool able 
to handle both data retrieval and structural data cura-
tion. In house scripts (e.g. Python, R, Pearl) are useful for 
accessing public databases for SMILES retrieval, but the 
majority are limited to internal laboratory use and are not 
always available. They also often require proficiency with 
the programming languages to be used. For data curation, 
there are some software programs such as ChemAxon 
[31] Tool, MOE [32] and OpenBabel [29], implementing 
functionalities for counterion removal, neutralization of 
salts, removal of duplicates and standardization of chem-
ical structures. However, almost no tools integrate both 
the data retrieval and curation procedures. The workflow 
presented here is one of the first attempts to provide a 
comprehensive automated tool to assist scientists in the 
preliminary steps to QSAR modeling.

One of the few and most notable example of auto-
mated curation of data proposed in the past is the pro-
cedure recently published by Mansouri et  al. [33]. The 
authors introduced an automated workflow for the cura-
tion and correction of errors in the structure of chemi-
cals. It compares structural information retrieved from 
four identifiers (chemical name, CAS number, SMILES 
and MolBlock) and the identification of mismatches and 
incongruences among these data. Stereoisomerism and 
different tautomeric forms are also addressed during the Fig. 4  Explication of aromaticity for some problematic chemotypes
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comparison. Last, a score was assigned to each data point 
based on the degree of consistency among the four iden-
tifiers. The procedure can be used in sequence with a sec-
ond KNIME workflow implementing a series of rules for 
chemical data curation, such as removal of counterions, 
neutralization, removal of inorganic compounds, and 
standardization of tautomer representation [34].

This procedure has the limitation that it considered 
only one source (the DSSTox database from EPA) (https​
://www.epa.gov/chemi​cal-resea​rch/distr​ibute​d-struc​
ture-searc​hable​-toxic​ity-dssto​x-datab​ase) [35] for data 
retrieval, and in very few cases MolBlock is available.

One of the notable features of the data curation work-
flow is the assessment of reliability for each record main-
tained in the final list. This reliability may be “medium” 
or “high”. It reflects the score assigned to the record dur-
ing the cleaning procedure and consequently the level of 
consistency among SMILES retrieved from the different 
data sources. This is extremely important because it ena-
bles the user to compile datasets with different levels of 
reliability and data quality, based on the needs and the 
number of compounds available. For example, if the cura-
tion procedure retains a large number of chemicals, one 
can choose to retain only entries with optimal quality 
that are safest for QSAR modeling. This is the ideal situ-
ation. However, in case of a dataset with quality and/or 
consistency issues, or only a moderate number of main-
tained records, the user may decide to keep both high 
and medium reliability records to obtain a sufficiently 
populated dataset for modeling.

The percentage of high and medium reliability records 
returned from the curation procedure also gives the 
user an overall view of the quality of the starting data. 
In the same way, the percentage of chemicals rejected 
by the procedure or needing a manual check give clues 

to the quality of input data. In other words, with data-
sets including chemicals that have a unique, well-known 
structure, such as drug chemicals, we may expect a very 
small number of rejected or dubious compounds, plausi-
bly related to errors in CAS number or chemical names. 
On the other hand, running the workflow on datasets 
of industrial chemicals will very likely lead to a larger 
number of rejected chemicals and ambiguous results. 
It is common in this kind of dataset to find problematic 
entries such as mixtures, reaction products, polymers, 
etc. that should be excluded from modeling.

Table  2 summarizes the data curation procedure on 
the Obach dataset, the SIN list from ChemSec and 
the EPISuite™ dataset. The first two datasets illustrate 
opposite cases of data quality and were treated with the 
semi-automated procedure, in order to show differences 
in cleaning results. The third dataset represent a larger 
collection of data with respect of the first two, and was 
selected to show the suitability of the procedure on larger 
datasets and its relevance in terms of time save.

The first dataset includes a series of Adsorption, Dis-
tribution, Metabolism, Excretion (ADMET) properties 
for 668 drug compounds [17]. In recent years computa-
tional methods have proved particularly adequate for the 
prediction of pharmacokinetics and/or ADMET prop-
erties [36], making it extremely important to compile 
curated datasets for the derivation of QSARs predictive 
of these endpoints. For drug compounds it is often easy 
to retrieve consistent information as the drug structures 
are usually well documented and ascribable to a single 
chemical structure.

Out of the total of 668 records, 607 (91% of the ini-
tial dataset) passed the cleaning procedure after the 
first curation step. Eight pairs of duplicates were found, 
mostly due to the removal of stereoisomerism (e.g., 

Table 2  Data cleaning results on  the  dataset from  Obach et  al. [17], the  SIN list from  ChemSec [18]  and the  EPISuite™ 
solubility dataset

Numbers refer to results before and after the manual check procedure

Category Obach et al. [17] SIN list [18] EPISuite™

Total 668 913 5761

Maintain (w/duplicates) 607 256 4635

Maintain (w/o duplicates) (H reliability) 514 163 3536

Maintain (w/o duplicates) (M reliability) 85 68 850

Manual check 47 115 639

Rejected (mixtures) 0 23 9

Rejected (inorganic or unusual elements) 2 194 96

Rejected (missing/ambiguous) 12 394 395

Maintain (manual check) (w/duplicates) 652 335 5014

Maintain (manual check) (w/o duplicates) (H reliability) 515 163 3554

Maintain (manual check) (w/o duplicates) (M reliability) 128 127 1171

Rejected (manual check failed) 2 36 260

https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database
https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database
https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database
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levofloxacin and ofloxacin; betamethasone and dexa-
methasone); 514 single structures (about 86% of the 
chemicals maintained) were considered highly reliable, 
and 85 were flagged for minor reliability issues. Only 14 
records (0.02% of the initial dataset) were rejected, one 
being inorganic (carboplatin), two having unusual ele-
ments (bortezomib and carboplatin) while 12 presented 
major reliability issues. As expected, no mixtures or other 
kinds of problematic chemicals were found in this data-
set. A manual check was required for 47 records. The 
manual check of these chemicals is not hard because, as 
already specified, the structures of the drugs are in the 
majority of cases well known and documented and they 
can be easily retrieved from different public sources. This 
make it easy to identify possible inconsistencies due to 
errors and consequently to recover the majority of these 
chemicals. We managed to retrieve 24 of them simply 
by comparing the name with the synonym automati-
cally retrieved from PubChem, while 19 of the remain-
ing 23 were recovered after manual examination. Only 
two records were rejected, one because it was a metal 
complex (gadoversetamide) and one because it showed 
conflicting information from web sources consulted. 
Chemicals maintained were further inspected for the 
presence of organic counterions. In the end, 652 chemi-
cals corresponding to 643 single records were kept from 
the original 668 records. This very high percentage of 
maintained chemicals was expected, and manual inspec-
tion was needed only for 47 records out of 668. In this 
specific case the usefulness of an automated procedure is 
clear in terms of time saved.

The SIN list (http://sinli​st.chems​ec.org/) from Chem-
Sec shows a different picture with respect of the Obach 
dataset. It is made up of a more heterogeneous collec-
tion of industrial chemicals including almost all kinds of 
problematic cases in terms of data set curation: mixtures, 
inorganic compounds and entries with consistency and 
quality issues. On a total of 913 records, only 256 (28% 
of the initial dataset) passed the first run of the cleaning 
procedure, and 542 entries (59% of the whole dataset) 
were immediately rejected. For 394 of the rejected struc-
tures, retrieved SMILES presented problems of ambigu-
ity or were totally missing. This is not unexpected, indeed 
it is common to find multiple industrial chemicals regis-
tered under a single CAS number (e.g., mixtures of struc-
tural isomers, mixtures of hydrocarbons with different 
lengths and degrees of branching), making it impossible 
to assign a single structure to these entries.

Of the total number of rejected chemicals, 194 were 
inorganic or included unusual elements, while 23 were 
mixtures. As explained, the real number of mixtures is 
probably higher if we consider those probably included 
in the large number of ambiguous or missing entries. A 

manual check was required for 115 chemicals. While in 
the Obach dataset only two chemicals did not pass the 
manual examination, in this case 36 out of 115 chemicals 
were rejected. Among those entries, mixtures of glycols 
or hydrocarbons (e.g. paraffin) with different lengths 
were found and removed because they have not got a 
fixed structure. Mixtures of stereoisomers were retained 
because stereochemistry was ignored. It was possible 
to recover some records showing typos or having more 
synonyms in the name field, separated by colons or semi-
colons. Ten chemicals were recognized as metal com-
plexes. In the end, the manual check procedure retrieved 
a total of 335 records, i.e. 37% of the initial compounds. 
This is far from the 91% of retrieved entries of the Obach 
dataset, giving a clear indication of the different quality 
of the two datasets. The same sort of conclusions can be 
drawn from the percentage of high-reliability chemicals, 
which is 56% (163 out of 290 single maintained struc-
tures), much lower than the 80% of Obach data. After a 
further check of maintained structures we identified and 
removed 13 additional metal complexes (seven single 
structures, four with high and three with medium reli-
ability) that erroneously passed the cleaning procedure. 
Such structures are often not recognized by the auto-
mated procedure, but they can be easily spotted in a sec-
ond manual inspection among chemicals flagged with 
“Organometallic” and “Organic counterion” warnings. In 
this case, the organic counterion is the same main struc-
ture that is repeated several times in the complex. This 
is a clear demonstration of the importance of a manual 
inspection of the final results, especially with such prob-
lematic datasets.

The workflow was also run to a third dataset, to dem-
onstrate the effectiveness of the tool on a larger set of 
data. The EPISuite™ water solubility dataset includes 
a total of 5761 chemicals (https​://www.epa.gov/tsca-
scree​ning-tools​/epi-suite​tm-estim​ation​-progr​am-inter​
face). After the first run of the cleaning procedure, 
4635 records (80% of the initial dataset) were kept, cor-
responding to 4386 unique structures (3536 with high 
reliability and 850 with medium reliability). A total of 
487 records (about the 8% of the initial dataset) were 
immediately rejected. The majority of them (395) 
showed missing or ambiguous information retrieved 
from CAS and chemical names, while 96 were rejected 
because they were inorganic or they include unusual 
elements. Nine records were recognized as mixtures. 
As expected, these percentages were in the middle of 
the values observed for the previous datasets, that were 
specially selected because they represent two oppo-
site, extreme cases. A manual check was required for 
639 out of 5761 records. 379 records passed the man-
ual check procedure, while 260 were rejected. Several 

http://sinlist.chemsec.org/
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
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samples were rejected because the chemical name 
reported in the dataset was truncated, and was impos-
sible to retrieve a SMILES from it. In some cases the 
manual check identified wrong SMILES that were ini-
tially retrieved from the CompTox or the CIR datasets 
(e.g., CAS 118247-04-4, 116482-80-5 or 116482-75-8, 
see Additional file 4) or identify incongruences between 
name and CAS (e.g., 3-ethyl-piperidine was wrongly 
associated in the dataset to the CAS 1484-80-6, that 
is the 2-ethyl analogue). As observed for the previous 
datasets, the manual check also allows to identify some 
typos that prevent to retrieve SMILES. In the end, 5014 
records corresponding to 4725 single chemicals were 
kept from the original 5761 records. The number of 
chemicals that needed to be checked by the user were 
definitely more than those in the previous datasets. 
This is a consequence of the higher number of records 
in this dataset. Despite this, the automated procedure 
allowed to sensibly reduce the manual intervention 
made by the user that had to make a check on about 
the 10% of the initial records. This clearly highlight the 
importance of the automated procedure in terms of 
time save and its suitability for screening large collec-
tions of data.

Information on the starting quality of a dataset is 
extremely important and should always be kept in 
consideration for a critical evaluation of the results of 
modeling exercises. QSAR models derived from data-
sets characterized by a great percentage of data with 
moderate reliability cannot be expected to give results 
of the same quality as models based only on high-qual-
ity data. This is all the more evident with larger por-
tions of moderate-quality data.

Currently, the workflow here presented is tailored for 
chemical structure cleaning, and it does not address 
endpoint data curation.

Endpoint curation, however, is another important 
aspect that should be considered when preparing a 
dataset for QSAR modeling because QSAR predictiv-
ity will reflect the quality of experimental data [1]. End-
point data gathered from different literature sources or 
from different laboratories are more likely to reduce the 
predictive quality of the final model [37], even thought 
this is sometimes unavoidable in order to obtain well-
populated datasets suitable for modeling. In such cases, 
it is important that the data are consistent and come 
from an analogous experimental protocol.

A common scenario in these cases is the presence of 
duplicates in different sources with different experi-
mental values. If the difference among values is large, 
all the duplicates should be excluded because the differ-
ence probably reflect an error in one or more records. 
If differences are minimal, they may well be related 

to experimental variability. In this case, some simple 
options (e.g. average values or most conservative val-
ues) may be considered to aggregate values.

Another case is that both experimental properties 
are correct but the previous curation (for example, the 
removal of counterions in salts) modified the substance 
records to create such duplicates. For instance, the two 
records might correspond to two different salts of the 
same compound (or a neutral compound and its salt). 
As previously mentioned, the experimental properties 
can be very different if they are directly influenced by 
the counterion (e.g. large organic counterions). In some 
cases, even large differences could be explained by the 
fact that the experimental properties are reported in mg 
(e.g. endpoint expressed as mg/kg, mg/L) and the differ-
ent molecular weight of counterions may be responsible 
for the different values. As stressed by Dearden et al. [8], 
the correct unit of measure when talking about doses 
or concentrations is the number of molecules (moles) 
and not the weight of the molecules (mg). Conversion of 
the unit from mg to mmol to account for differences in 
molecular weight between the two salts may therefor lead 
to closer experimental values. Some authors recognize 
the error introduced by neutralizing salts, because differ-
ent salts or a salt and its neutral form may have different 
behaviours [11, 13]. They suggest excluding salts form the 
dataset as an alternative. Using the information reported 
in the output of the workflow, the user may also follow 
this option in salt treatment.

These simple basic treatments (quantification of the 
differences in activity between duplicates, aggregation of 
experimental values, and conversion of the endpoint unit 
to mmol) will be considered for implementation in future 
versions of the workflow. This technical improvement 
is not particularly difficult considering the flexibility of 
KNIME workflows and the possibility of easily modifying 
and adapting them to various needs.

Conclusions
In the last few years, several publications have summa-
rized the main good practices that should be applied in 
data curation [2, 11–14]. High-quality data is essential to 
obtain robust and predictive QSARs, and ignoring this 
will invalidate all the subsequent steps of model deriva-
tion. Despite this, to date only few attempts have been 
made to formalize and implement these good practices in 
an automated and usable tool. The present study meets 
the invitation made by Fourches et al. [13] which encour-
ages experts to contribute their knowledge and best prac-
tices for dealing with the issues related to data curation. 
Following this invitation, the authors in turn encourage 
the expert community to apply this tool in their sci-
entific work and improve the workflow based on their 
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knowledge and experience. Our hope is that this tool will 
serve in future as a valuable support for researchers.
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