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Abstract 

Background:  Because drug–drug interactions (DDIs) may cause adverse drug reactions or contribute to complex-
disease treatments, it is important to identify DDIs before multiple-drug medications are prescribed. As the alterna‑
tive of high-cost experimental identifications, computational approaches provide a much cheaper screening for 
potential DDIs on a large scale manner. Nevertheless, most of them only predict whether or not one drug interacts 
with another, but neglect their enhancive (positive) and depressive (negative) changes of pharmacological effects. 
Moreover, these comprehensive DDIs do not occur at random, but exhibit a weakly balanced relationship (a structural 
property when considering the DDI network), which would help understand how high-order DDIs work.

Results:  This work exploits the intrinsically structural relationship to solve two tasks, including drug community 
detection as well as comprehensive DDI prediction in the cold-start scenario. Accordingly, we first design a balance 
regularized semi-nonnegative matrix factorization (BRSNMF) to partition the drugs into communities. Then, to predict 
enhancive and degressive DDIs in the cold-start scenario, we develop a BRSNMF-based predictive approach, which 
technically leverages drug-binding proteins (DBP) as features to associate new drugs (having no known DDI) with 
other drugs (having known DDIs). Our experiments demonstrate that BRSNMF can generate the drug communi‑
ties, which exhibit more reasonable sizes, the property of weak balance as well as pharmacological significances. 
Moreover, they demonstrate the superiority of DBP features and the inspiring ability of the BRSNMF-based predictive 
approach on comprehensive DDI prediction with 94% accuracy among top-50 predicted enhancive and 86% accu‑
racy among bottom-50 predicted degressive DDIs.

Conclusions:  Owing to the regularization of the weak balance property of the comprehensive DDI network into 
semi-nonnegative matrix factorization, our proposed BRSNMF is able to not only generate better drug communities 
but also provide an inspiring comprehensive DDI prediction in the cold-start scenario.
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Introduction
When two or more drugs are taken together, their phar-
macological effects or behaviors would be unexpect-
edly influenced by each other [1]. Such an influence is 
termed as Drug–Drug Interaction (DDI), which would 
reduce drug efficacy, increase unexpected toxicities, or 
induce other adverse drug reactions among the co-pre-
scribed drugs. Unidentified DDIs occur frequently in 
clinical usages. There exist ~  15 DDIs out of every 100 
drug pairs on average among approved small molecular 
drugs in DrugBank [2]. They would put patients, who 
are treated with multiple-drug medications, in an unsafe 
situation [3–6]. Moreover, understanding DDI is the first 
step towards drug combination, which involves usually 
high-order DDIs [7] and becomes one of the promis-
ing treatments for multifactorial complex diseases [8]. 
Consequently, there is an urgent need to analyze and 
identify DDIs before clinical co-medications are admin-
istered. However, traditional experimental approaches 
for DDI identification (e.g. testing cytochrome P450 [9] 
or transporter-associated interactions [10]) have high 
cost and long duration [11]. So far, only a few DDIs 
could be identified during drug development (usually the 
clinical trial phase), some of them are reported after the 
drugs are approved, and many are found in post-market 
surveillance.

Computational approaches provide a promising alter-
native to discover potential DDIs on a large scale for fur-
ther screening and have gained a lot of attention from 
both academy and industry recently [12, 13]. Data-min-
ing based approaches have been developed for detect-
ing DDIs from different sources [11], such as scientific 
literatures [14, 15], electronic medical records [16], and 
the Adverse Event Reporting System of FDA (http://
www.fda.gov). Even though these approaches can collect 
and report known DDIs, they cannot an early warning of 
potential DDIs before clinical medications are adminis-
tered. In contrast, machine learning-based approaches 
(e.g. naïve similarity-based approach [17], network rec-
ommendation-based [11], classification-based [18, 19] 
are able to provide such alerts by utilizing pre-marketed 
or post-marketed drug attributes [20], such as chemical 
structures [17, 21], targets [22], hierarchical classification 
codes [18] and side effects [11, 23].

Most of these existing machine learning-based 
approaches are designed for conventional binary predic-
tion, which only indicates how likely a pair of drugs is a 
DDI. But two interacting drugs may change their own 
pharmacological behaviors or effects (e.g. increasing or 
decreasing serum concentration) in  vivo [21, 23]. For 
example, the serum concentration of Quinine (DrugBank 
Id: DB00468) increases when it is taken with Aprepitant 
(DB00673), whereas its serum concentration decreases 

when taken with Mitotane (DrugBank Id: DB00648). We 
refer these two cases of DDIs as an enhancive DDI and 
a degressive DDI respectively and both of them as com-
prehensive DDIs, which contains drug changes in terms 
of pharmacological effects. It is much better to know 
whether a DDI is enhancive or degressive, especially 
when making optimal patient care, establishing drug dos-
age, or finding drug resistance to therapy [24].

On the other hand, the occurrence of both enhancive 
DDIs and degressive DDIs is not random, but exhibits 
a structural relationship among the drugs when consid-
ering the corresponding DDI network [21, 23]. Existing 
approaches have not yet exploited this structural prop-
erty, which is, however, one of the most important steps 
to understand high-order drug interactions treating 
complex diseases [7]. Two of our recent works [21, 23] 
attempted to investigate these two issues: (1) predicting 
comprehensive DDIs instead of binary prediction; and 
(2) investigating the structural relationship of drugs in a 
DDI network. One of them proposed a model to predict 
enhancive and degressive DDIs for different predicting 
scenarios of new drugs (those with no known DDI) [23]. 
Another one observed that the numbers of enhancive 
and degressive DDIs of drugs, as well as their sum/differ-
ence, are correlated with drug communities [21]. More 
importantly, this latter work also reveals that the number 
of balanced triads (to be defined and explained in Fig. 1) 
is significantly larger than the number of unbalanced tri-
ads in a comprehensive DDI network. This observation is 
similar to that in signed social networks, which popularly 
exhibit the nature of global structural balance [25]. Upon 
the fundamental theorems of Strong Balance [26] and 
Weak Balance [27], this nature can be leveraged to pre-
dict signed links in the social networks [28].

Inspired by signed social networks, this current work 
exploits the weakly balanced relationship among drugs 
to solve two tasks: drug community detection as well as 
comprehensive DDI prediction in the cold-start scenario. 
The paper is organized as follows. "Methods" section first 
formulates the community partition in a comprehensive 
DDI network based on the weak balance theory [27] for 
signed networks. Then, for the first task, it represents a 
novel clustering algorithm, balance regularized semi-
nonnegative matrix factorization (BRSNMF), which 
integrate a low-rank matrix decomposition with a weak 
balance regularization. After that, it depicts a BRSNMF-
based predictive approach for the cold-start scenario that 
requires us to predict potential comprehensive DDIs for 
newly coming drugs having no known DDI. In Section 
Results and Discussions, after introducing the weakly bal-
anced phenomenon in a real DDI network, we investigate 
the advantages of BRSNMF by two comparative experi-
ments. In the first experiment, we compare BRSNMF to 
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the traditional semi-nonnegative matrix factorization by 
investigating drug numbers, balances, and pharmacologi-
cal significances across drug communities. In the second 
one, we compared our features based on drug-binding 
proteins (DBP) to the popular features based on drug 
chemical structures (e.g. PubChem fingerprints) under 
cross-validation. Furthermore, leveraging our DBP fea-
tures under a version-independent test, we compared 
our BRSNMF-based approach with the state-of-the-art 
approach DDINMF [21], which considers nothing about 
the weakly balanced relationship among drugs. In the last 
section, we draw our conclusions with discussions.

Methods
Community partition in comprehensive DDI network
Without loss of generality, let D =

{

di
}

, i = 1, 2, . . . ,m 
be a set of m approved drugs. Their interactions can be 
accordingly represented as an m×m symmetric interac-
tion matrix Am×m =

{

aij
}

 . For the conventional DDIs, 
aij = 1 if di interacts with dj , and aij = 0 otherwise. For 
the comprehensive DDIs, aij ∈ {−1, 0,+1} . Again, if di 
and dj do not interact with each other, aij = 0 . When 
there is an enhancive DDI or a degressive DDI between 
di and dj , aij = +1 or aij = −1 respectively. The conven-
tional binary DDI matrix Ab can be obtained from the 
comprehensive DDI matrix by setting Ab = Binary(A) 
(taking the absolute values of all elements). The com-
prehensive DDI matrix characterizes a signed network 

G(N ,E) , in which drugs are nodes and their interactions 
are edges.

According to Weak Balance Theory [27], the nodes of 
a weakly balanced signed network can be ideally clus-
tered into k groups, such that the edges within groups are 
positive (enhancive) and the edges between groups are 
negative (degressive). In such a weakly balanced network, 
all its l-cycles are strongly or weakly balanced. Here, an 
l-cycle is defined as a simple path from some node to 
itself with length equal to l. We mainly consider the case 
of l = 3, where a 3-cycle is called as a triad. There are four 
kinds of triads, labelled as PPP, NNP, NNN, and PPN 
respectively, where P denotes positive and N denotes 
negative edges in a triad (Fig. 1). The first two triads are 
strongly balanced, the third is weakly balanced and the 
last is unbalanced. The real-world signed networks (e.g. 
Epinions and Slashdot) are not purely balanced because 
they contain some (although much fewer) unbalanced 
triads (Fig. 1), which are caused by negative edges within 
groups or positive edges between groups.

Our DDI network is also such a network, which con-
tains significantly more balanced triads than unbalanced 
triads [21]. We verify our observation using the real data 
in DrugBank (see "Dataset" section). In our DDI net-
work, we also observe that it may contain a community, 
in which most edges are negative (i.e. most triads in the 
community are weakly balanced). Considering the above 
observations, we generalize the weak balance theory 
as follows: the nodes of a weakly balanced network can 

Fig. 1  The illustration of a comprehensive DDI network. (1) The left panel shows the DDI network. Four communities are highlighted by dashed 
curves. Most edges within communities are positive or negative while most edges between communities are negative. Blue single lines and yellow 
double lines denote enhancive and degressive interactions respectively. (2) The right panel lists four types of triads, including two strongly balanced 
triads (PPP and NNP), one weakly balanced triad (NNN) and one unbalanced triad (PPN). The numbers in the triads show the number of occurrences 
of this structure in the network (e.g. PPP appears 4 times in the network)
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be ideally clustered into k groups, such that most edges 
within groups are positive (strongly balanced groups) 
or negative (weakly balanced groups) while most edges 
between groups are negative. In the context of such 
a comprehensive DDI network, a drug community is 
referred to as a cluster, in which the number of balanced 
l-cycles is significantly greater than that of unbalanced 
l-cycles. A real example of a small DDI sub-network illus-
trates this idea (Fig. 1).

When given a DDI network, our problem can be for-
mulated as a k-way clustering problem (i.e. finding k 
communities {C1, . . . ,Ck} ). We anticipate (1) the clus-
tering partitions the network into k evenly distributed 
drug clusters, of which each contains a sufficient number 
of drug nodes; (2) more importantly, most interactions 
within clusters are enhancive or degressive while most 
interactions between clusters are degressive. This clus-
tering problem is NP-hard [29]. To solve it, we present 
an approximate solution by designing a low-rank matrix 
decomposition, which maps the network into a low-
dimensional space so as to reveal its underlying weakly 
balanced structure.

Clustering by balance regularized semi‑nonnegative 
matrix factorization
For a non-negative matrix A, nonnegative matrix fac-
torization (NMF) decomposes it into two low-rank non-
negative factor matrices W and H, such that A ≈ WH

T . 
The non-negativity of NMF makes both W and H easier 
to interpret and provides an inherent clustering, in which 
the columns of W play the cluster centroids and the rows 
of H can be viewed as the cluster indicators for the col-
umns of A. Since the strong constraint of non-negativity 
of A, NMF cannot be applied in many problems (e.g. 
our problem). To accommodate more scenarios, one of 
its extensions, semi-nonnegative matrix factorization 
(Semi-NMF) is proposed for a real matrix A with only 
one constraint of non-negativity of H [30]. Motivated by 
Semi-NMF, we design a variant of semi-NMF, which not 
only inherits the advantages of Semi-NMF but also rep-
resents the underlying weakly balanced structure of com-
prehensive DDI network. The novel Semi-NMF on DDI 
networks is stated formally as a k-way clustering problem 
in the following.

Given a comprehensive DDI matrix Am×m ∈ R , 
we aim to find a community centroid matrix 
Wm×k = [w1,w2, . . . ,wk ] ∈ R and a community indica-
tor matrix Hm×k = {hij} ∈ R

+ , whose product can well 
approximate the original matrix A± ≈ W

±(H+)T , where 
k ≪ rank(A) and the element hij denotes the likelihood 
that node i belongs to the jth community.

Furthermore, we anticipate that most interactions 
within drug communities are enhancive and most edges 

between drug communities are degressive. To avoid par-
titioning where most clusters contain only a few nodes, 
we also prefer that each cluster contains substantial 
nodes. As a result, we introduce two graph regulariza-
tion items, including a within-community criterion Gr1 
and a between-community criterion Gr2 , to encode the 
balanced structure of DDI network. They are defined as 
follows:

where h.c is the cth column vector in H, L+ = D
+ − A

+ , 
D

+ is the diagonal degree matrix of A
+ , and 

∀i, j. a+ij = (|aij| + aij)
/

2 , a−ij = (|aij| − aij)
/

2.
Inspired by [31], we combine them together and obtain

when W = I and K̂ = σ I− η(A− + L
+) , it becomes

where σ , η > 0 control the sizes of clusters [32].
In addition, we introduce another regularization item 

Sr to control the sparsity of H such that the drug nodes in 
DDI network belong to as few communities as possible. It 
is defined as,

where 1 is the k × k matrix, of which all elements are 1.
Integrating all the regularization items into the low-

rank matrix decomposition, we design the balance 
regularized semi-nonnegative matrix factorization 
(BRSNMF) as,

Since the constraint is H ∈ R
+ , we leverage the Lagran-

gian function and the Karush–Kuhn–Tucker conditions 
to solve it by the updating rules as follows

(1)

Gr1 = min

k
∑

c=1

h
T
.cA

−
h.c

hT.ch.c

, Gr2 = min

k
∑

c=1

h
T
.cL

+
h.c

hT.ch.c

(2)
Gr = min

k
∑

c=1

h
T
.c (A

− + L
+)h.c

hT.ch.c

≡ max tr
(

H
T
W

1/2(W−1
K̂W

−1
)W1/2

H

)

.

(3)
Gr ≡ max tr

(

H
T (σ I− η(A− + L

+))H

)

= max tr(G),

(4)Sr =

m
∑

j

||hj.||
2
1 = tr

(

H1H
T
)

= tr(S),

(5)
min

∥

∥

∥
A −WH

T
∥

∥

∥

2

F
+ α · tr(S)− β · tr(G).

s.t. hij ≥ 0, ∀i, j ∈ [1, . . . ,m]

(6)W ← AH(HT
H)−1

,

(7)H ← H⊙ (N ÷D)1/2
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where the operators X+ = (|A| + A)
/

2,X− = (|A| − A)
/

2 , 
|A| is the element-wise absolute operation on A, ⊙ and 
÷ are the element-wise product and division between 
two matrices. The solution of BRSNMF is presented in 
Algorithm 1. Obviously, the variant of BRSNMF without 
Sr and Gr degrades exactly to Semi-NMF. More techni-
cal details about Semi-NMF can be found in [21, 33]. 
Similar to NMF and Semi-NMF, BRSNMF provides an 
intrinsic clustering, where the columns of W play as clus-
ter centroids and the rows of H can be viewed as cluster 
indicators.

To reflect how well a signed network is partitioned 
into communities, the clustering is globally measured by 
a community balance index CBI, which is a community 
size-weighted average number of balanced triads in com-
munity. It is defined as

where #PPNc is the number of unbalanced triads and 
#triadsc is the total number of triads in community c, nc 
denotes the community size and k is the total number of 
communities in the clustering. The greater the value of 
CBI, the better the clustering.

In addition, we define two local metrics, Com-
munity-Within Difference (Δw) and Community-
Between Difference (Δb), as �w = ln(Rw

e )− ln(Rw
d ) and 

�b = ln(Rb
e )− ln(Rb

d) , where Rw
e  is the ratio of enhancive 

DDIs to all the drug pairs,Rw
d  is the ratio of degressive 

DDIs to all the drug pairs within a community. Similarly, 
Rb
e and Rb

d are two corresponding ratios between two 
communities. The larger difference, the more enhancive 
DDIs; the smaller the difference, the more degressive 
DDIs.

(8)
N = (AT

W)+ + (HW
T
W)− + βη(L+H)− + βσH,

(9)
D = (AT

W)− + (HW
T
W)+ + αH1

+ βηA−
H+ βη(L+H)+

(10)

CBI =

∑k
c=1 nc ∗

(

1− #PPNc
#triadsc

)

∑k
c=1 nc

× 100% ∈ [0, 1],

BRSNMF‑based approaches for predicting potential 
comprehensive DDIs of new drugs
In this section, we show how to make use of BRSNMF to 
predict potential comprehensive DDIs focusing on the 
scenario of DDI prediction between ‘new drugs’ (without 
known DDIs) and ‘approved drugs’ (drugs with known 
DDIs) as the prediction problem is known to be diffi-
cult if new drugs are involved (Fig.  2a). New drugs can 
be regarded as isolated nodes in the DDI network [21]. 
This prediction scenario is analogous to the well-known 
cold-start problem in social recommendation [34]. Such 
a prediction requires additional properties (or features) 
to relate new drugs with approved drugs. Unlike most of 
protein–protein interactions or drug–target interactions 
[35], pharmacological DDIs are not physical interactions 
(usually related to their chemical structures) between 
drugs, but indirect interactions which are mediated by 
proteins. Thus, we use drug-protein binding informa-
tion as the features of the drugs to relate new drugs with 
approved drugs in the cold-start scenario. In addition, 
such a kind of features can capture particular pharma-
cological meanings of drug communities detected by 
BRSNMF (see the next section for more details).

We formally state the cold-start prediction problem 
as follows. Let D =

{

di
}

, i = 1, 2, . . . ,m be a set of m 
approved drugs, the interaction matrix of their DDI net-
work be Am×m =

{

aij
}

 , and Dx =
{

dx
}

, x = 1, 2, . . . , n 
be a set of n new drugs. Any of approved drugs D or new 
drugs Dx , is represented as a p-dimensional feature vec-
tor fi = [f1, f2, . . . , fp] . All the drugs in D are sequentially 
stacked as an m× p feature matrix F . Similarly, the drugs 
in Dx are stacked as an n× p feature matrix Fx . Adopting 
the framework for the cold-start prediction in [21], Our 
BRSNMF-based approach in the scenario of predicting 
DDIs for new drugs includes a training phase and a pre-
dicting phase as follows and also illustrated in Fig. 2b.

1.	 In the training phase, the approach obtains a matrix 
factorization Am×m ≈ Wm×k × (Hm×k)

T BRSNMF 
and a linear regression Hm×k = Fm×p × Bp×k by 
Partial Least Square Regression (PLSR).

2.	 In the predicting phase, the learned Bp×k firstly maps 
Fx into the n× k latent space by Hx = Fx × B . Then 
the n×m predicted interactions between the new 
drug and the approved drugs by

	

Specifically, PLSR combines the properties of PCA 
and multiple regression by projecting the predicted vari-
ables (drug cluster indicator matrix H) and the observ-
able variables (features) to a new space, instead of finding 
hyperplanes of maximum variance between the response 

(11)Ax = HxW
T = (FxB)W

T
.
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and independent variables. Thus, our BRSNMF-based 
approach, containing PLSR, implicitly considers the fea-
ture reduction, and it has only one parameter k to be 
tuned in the training phase (see also "Comprehensive 
DDI prediction in the cold-start scenario" section).

As shown in Fig. 2, the cold-start scenario requires the 
prediction of interactions between newly given drugs 
having no known DDI and a set of drugs interacting with 
each other in the form of a DDI network. To mimic such 
a scenario, we remove a part of drugs with their interac-
tions from the dataset and attempt to predict their inter-
actions by Step 2, while using the remaining drugs and 
their interactions to by Step 1 in each round of cross-
validation (CV). There is a slight difference between two 

typical CVs, leave-one-out CV (LOOCV) and n-fold CV 
(n-CV). LOOCV removes only one drug in each round 
whereas n-CV randomly removes 1/n drugs. Their results 
have no significant difference when the samples are 
substantial.

The performance of DDI prediction under CV are 
illustrated by both the receiver operating characteristic 
curve (ROC) and the precision–recall curve (PR), and 
measured by the areas under them, denoted AUROC 
and AUPR respectively. As suggested by [36], AUPR 
is more appropriate than AUROC when the number of 
positive instances is significantly less than that of nega-
tive instances. The greater the values of AUROC and 
AUPR are, the better the prediction is. See their detailed 

Fig. 2  Predicting comprehensive interactions in the cold-start scenario. a A toy example of predicting how likely the new drug ‘X’ interacts with 
other drugs in terms of pharmacological changes. In the network shown in the left panel, the nodes numbered from 1 to 7 are drugs having known 
comprehensive interactions and the isolated node labeled by ‘X’ denotes the newly given drug having no interactions with the previous drugs. Blue 
single lines and yellow double lines denote enhancive (positive) and degressive (negative) interactions respectively. The adjacent matrix of the DDI 
network is shown the right panel. b The framework of the BRSNMF-based predictive approach. All the dimensions of the matrices are also listed
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calculation in [21]. In addition, under the consideration 
that non-interactions could be unknown drug pairs, 
Mean Percentile Ranking (MPR) is used as an extra per-
formance metric when measuring DDI prediction. The 
smaller the value, the better the prediction. More techni-
cal details about MPR can be found in [37, 38].

Results and discussions
Dataset
We collect approved small molecular drugs and their 
DDIs from DrugBank [2, 39]. After collecting DDIs, we 
label enhancive DDIs by the keyword ‘increase’ or its 
synonyms and label degressive DDIs by the keywords 
‘decrease’ or its synonyms according to the descriptions 
of DDI respectively. Two datasets, DB_V4 and DB_V5_
Ex, are built according to the version of DrugBank as 
we need to use known DDIs to validate the accuracy of 
our prediction. All the drugs and DDIs in DB_V4 are 
included in DrugBank Version 4 [2], while all the drugs 
in DB_V5_Ex are newly included in DrugBank Version 
5 but not found in DB_V4. The DDIs between the drugs 
in DB_V5_Ex and the drugs in DB_V4 are also extracted 
from DrugBank Version 5. The information of these two 
datasets is summarized in Table 1.

For all the drugs, we also collect their drug-binding 
proteins (DBP), including 1213 drug targets and 429 non-
target proteins, which play important roles in pharmaco-
dynamic and pharmacokinetic processes of drugs. These 
proteins are used to investigate the pharmacological sig-
nificance and leveraged as features so as to associate new 
drugs having no known with drugs having known DDIs 
in the prediction of comprehensive DDI. In the follow-
ing sections, DB_V4 is first used to detect pharmacologi-
cal communities ("Drug community partition" section). 
Then, it is used to validate the effectiveness of DBP fea-
tures and train a predictive model of comprehensive 
DDIs while DB_V5_Ex is only used to validate the pre-
dicting model of our BRSNMP-based prediction method 
("Comprehensive DDI prediction in the cold-start sce-
nario" section).

Moreover, to verify our observation on the weakly bal-
anced relationship among the drugs, we first make a sta-
tistics of triad types. Totally, the DDI network included 

in DB_V4 contains 50.96% PPP, 18.56% NNP, 7.11% NNN 
and 23.37% unbalanced PPN triads. Then, we investigate 
whether the subsampling of drugs influences the com-
position of the four triads. After removing a set of drugs 
(e.g. 1/20, 1/8, 1/4 and 1/2 drugs) randomly and the 
involving DDIs from DB_V4, we observe that the triad 
composition has no significant change. For instance, after 
we remove 1/8 drugs and their DDIs, the subnetwork of 
DDIs contains 51.18% PPP, 18.34% NNP, 7.16% NNN and 
23.28% PPN triads. Last, we compare the DDI network 
with a randomized network, which is generated by ran-
domly shuffling enhancive and degressive DDIs among 
the drugs. In such a randomized network, we observe a 
group of significant different triad compositions, which 
contain 55.6% balanced triads (including 33.1% PPP, 
19.6% PNN, 2.9% NNN) and 44.4% unbalanced triads 
(PPN). The above pieces of evidence reveal that the real 
DDI network has an intrinsic property of weakly bal-
anced relationship among drugs.

Drug community partition
In this section, we investigate the communities gener-
ated by BRSNMF and compared them with those gener-
ated by Semi-NMF. Similar to the traditional clustering, 
k-means, either our BRSNFM or Semi-NMF require a 
parameter (k) to indicate the anticipated number of clus-
ters in advance. In fact, clustering algorithms, no matter 
what they are, surely need a parameter to be specified. 
For example, centroid-based clustering algorithms (e.g. 
k-means, k-medoids, fuzzy c-means) need to specify the 
number of clusters (k); connectivity-based clustering 
algorithms (e.g. UPGMA) are able to provide a hierar-
chical clustering and still need a cutoff to determine the 
final clusters; distribution-based clustering algorithms 
(e.g. Gaussian mixture models) use a fixed number of 
distributions corresponding to the number of clusters; 
density-based clustering algorithms (e.g. DBSCAN and 
Mean-shift) define the clusters are areas of high density, 
which depends on a density criterion. Like k-means, once 
the number of communities, k, is given, BRSNMF splits 
samples into k non-overlapping groups. In the context 
of the comprehensive DDI network, BRSNMF partitions 
drugs into k communities.

Parameter tuning in community partition
Before performing the comparison, we check how the 
tuning parameters (α, β, η, and σ) in Formula 5 influence 
the clustering. Since β controls both σ and η (shown in 
Formula  5) simultaneously, we just tune α and β from 
0.05, 0.25, 0.5, 1, and 5 respectively with fixing σ = 1 and 
η = 1.

First, we globally measure the influence by CBI (defined 
in Formula  10). By running the grid search of α and β, 

Table 1  Details of comprehensive DDI network

E-DDI enhancive DDIs, D-DDI degressive DDIs, DDI_V4 the DDIs among the drugs 
in DB_V4, DDI_V4_V5_Ex the DDIs between the drugs in DB_V4 and the drugs in 
DB_V5_Ex

DB_V4 Number DB_V5_Ex Number

#Drug_V4 1562 #Drug_V5_Ex 39

#E-DDI_V4 125,298 #E-DDI_V4_V5_Ex 1077

#D-DDI_V4 55,278 #D-DDI_V4_V5_Ex 1110
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we obtain 25 values of CBI with each pair of α and β for 
a specific number of drug communities. Moreover, we 
measure the influence by two interaction ratio-derived 
items, including SRw = Rw

e + Rw
d  and DRw = Rw

e − Rw
d  . 

The first one denotes how dense the community is, 
while the second one reflects whether enhancive DDIs 
or degressive DDIs are dominant. Again, we obtain 25 
pairwise values of SRw and DRw for each drug commu-
nity in the case of a specific number of drug communi-
ties. The influence of these parameters on drug partition 
is measured by their standard deviations. The smaller the 
standard deviation, the less sensitive the partition to the 
parameters.

In the case of k = 3, for example, BRSNMF splits sam-
ples into 3 non-overlapping drug communities, where 
both the first community and the third one are strongly 
balanced while the second one is weakly balanced. Over-
all, BRSNMF achieves CBI  =  0.8958  ±  0.0080, which 
demonstrates that the balance across communities, on 
average, is less variable. On the other side, for the strongly 
balanced communities, their SRw are 0.3318  ±  0.0151 
and 0.1422  ±  0.0015. Meanwhile, their DRw are 
0.3057 ± 0.0181 and 0.1161 ± 0.0023. For the weakly bal-
anced community, its SRw and DRw are 0.2938 ± 0.0225 
and − 0.2307 ± 0.0282 respectively. These small standard 
deviations reflect that both the community dense and the 
dominant type of DDI in community changes trivially. 
Similar results are observed in other cases of k during 
the grid search of α and β. The experiments show that the 
generated communities in all the combinations of α and β 
are consistent.

To summarize, BRSNMF is robust to different values of 
parameters. Thus, for simplicity, we fixed all the tuning 
parameters with 1 (α = β = η = σ = 1).

Better drug community partitions achieved by BRSNMF
To demonstrate the superiority of BRSNMF, we run 
BRSNMF and Semi-NMF to partition the comprehen-
sive DDI network into communities respectively. First, 
we investigate the community sizes (drug numbers in 
community) when given different community numbers, 
where k =  2, 3, 4, 5, 6, 7, and 8 respectively (Table  2). 
In terms of community size, both Range and Standard 
Derivative measure the community partition (clustering). 
The smaller the value, the better the partition. Compared 
with Semi-NMF, the results show that BRSNMF tends 
to generate the communities having both the smaller 
ranges and the smaller standard deviations significantly 
in terms of community size (Fig. 3 and Table 2). Specifi-
cally, all the communities generated by BRSNMF contain 
a substantial number of drugs, especially when k is large. 
For instance, in the case of k = 8, the smallest commu-
nity generated by Semi-NMF contains only 7 drugs while 
that generated by BRSNMF contains 45 drugs. In short, 
BRSNMF is able to partition drugs into the communities, 
of which each contains enough drugs and the number of 
its drugs is less dispersed across all the communities.

Moreover, we choose the case of three communi-
ties to take a deeper analysis, where Semi-NMF gener-
ated three communities containing 1115, 151 and 296 
drugs respectively while BRSNMF achieved the com-
munities containing 469, 281 and 812 drugs respec-
tively. We measure the communities generated by two 
approaches in terms of the global metric, CBI, defined in 

Table 2  Summary of community sizes

k Cluster Id 1 2 3 4 5 6 7 8

2 Semi-NMF 1372 190 – – – – – –

BRSNMF 870 692 – – – – – –

3 Semi-NMF 1115 151 296 – – – – –

BRSNMF 469 281 812 – – – – –

4 Semi-NMF 1072 160 260 70 – – – –

BRSNMF 340 262 480 480 – – – –

5 Semi-NMF 849 147 313 46 207 – – –

BRSNMF 318 252 397 111 484 – – –

6 Semi-NMF 804 129 323 105 178 23 – –

BRSNMF 274 247 305 270 178 288 – –

7 Semi-NMF 823 115 312 108 170 25 9 –

BRSNMF 258 232 361 122 134 299 156 –

8 Semi-NMF 827 110 304 110 147 31 7 26

BRSNMF 277 224 45 84 171 293 189 279
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Formula 10. Our BRSNMF achieves 89.58% while Semi-
NMF achieves 82.54% in the case of 3 communities. 
We also measure them by two proposed local metrics, 
including community-within differences for each com-
munity and community-between differences for pairwise 
communities. The differences are grouped into matrices 
(Table 3), in which the diagonal entries list the values of 
Δw and the off-diagonal entries denote the values of Δb. 
The results show that the average Δw of strongly balanced 
communities achieved by Semi-NMF and BRSNMF are 
2.4437 and 2.7676 respectively and the average Δb are 
1.0207 and 0.0952 respectively. According to our crite-
ria about Δw and Δb, BRSNMF is significantly superior to 
Semi-NMF (see also "Clustering by balance regularized 

semi-nonnegative matrix factorization" section ). In par-
ticular, except for two strongly balanced communities, 
BRSNMF is able to detect a weakly balanced community 
(its Δw < 0) whereas Semi-NMF cannot. Compared with 
the whole DDI network, such a weakly balanced com-
munity shows a special triad composition that contains 
0.85% PPP, 27.44% NNP, 67.19% NNN, and only 4.52% 
unbalanced PPN triads. In addition, after reordering the 
DDI matrix according to the communities generated by 
Semi-NMF and BRSNMF respectively, we visualize these 
communities as two pseudo-color images, which provide 
an illustration consistent to Δw and Δb (Fig. 4b, c). Mean-
while, as a comparison, the original image of DDI matrix 
is also shown (Fig. 4a). In short, by capturing the intrinsic 
property of weakly balanced relationship among drugs, 
BRSNMF, compared with Semi-NMF, is able to gener-
ate a better drug partition, where drugs within a cluster 
(drug community) tend to exhibit the strongly or weakly 
balanced relationship while drugs belonging to two dif-
ferent clusters tend to show the unbalanced relationship. 

Pharmacological significance of balanced clusters
The generated clusters are valuable in clinics. Specifically, 
drugs attending in the multiple-drug treatment would 
cause pharmacological changes due to their interactions. 
The result of pharmacological changes can be deduced 
if the drugs come from the same balanced community 
(usually forming a balanced l-cycles), whereas it cannot 
be inferred if the drugs come from different communi-
ties. These pharmacological changes surely influence 
clinical medication, including dosage, medicine interval, 
therapeutic window, synergistic combination, and so on.

Furthermore, they are important to biology. The inter-
action between two drugs is always caused by their bind-
ing to common or functionally related proteins (DBP), 
which can be roughly grouped into target proteins and 
non-target proteins. Drug targets are the proteins, which 
are bound by drugs to result in a desirable therapeutic 
effect, while non-target proteins usually play varied roles, 
such as catalyzing chemical reactions involving a specific 

Fig. 3  The statistics of community sizes

Table 3  Comparison of community-within difference (Δw) and community-between difference (Δb) 

Italic values indicate community-within difference while regular values indicate community-between difference

Semi-NMF C1 C2 C3

C1 0.3588 2.2338 1.4717

C2 2.2338 3.5961 − 0.6434

C3 1.4717 − 0.6434 3.3763

BRSNMF C1 C2 C3

C1 3.2832 − 0.1795 0.7275

C2 − 0.1795 − 2.1615 − 0.2624

C3 0.7275 − 0.2624 2.2520
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drug, shuttling drugs across cell membranes, or increas-
ing the effectiveness of drug delivery to the target sites of 
pharmacological actions.

Their meaning, potential application and biological 
implication are depicted as follows.

1.	 Meaning of balanced clusters

Assume that the drugs attend in a three-drug treat-
ment and all the pairwise interactions between them 
change their serum concentration (SC). Such as a phar-
macological change is enough to elucidate the meaning 
of balanced cluster though DDIs trigger varied phar-
macological changes (i.e. the change of bioavailability, 
distribution, …) in reality. In this context, an enhancive 
interaction reflects the increment of SC while a degres-
sive interaction indicates the decrement. We show a 
theoretical analysis of how the pharmacological changes 
derived from the drugs in a balanced cluster can be 
deduced in terms of drug triads as follows.

In a strongly balanced cluster, the pharmacological 
change (i.e. dose) of any drug in a triad (ideally a PPP 
triad or an NNP triad) surely causes the consistent influ-
ence on the triad. Let di, dj, and dk be three drugs in a 
triad. When the triad is a PPP triad, the slightly increas-
ing dose of any of these drugs would increase the SCs of 
all of them, because any of them boosts the others. When 
the triad is an NNP, where both the interaction di–dj 
and the interaction di–dk are degressive and the inter-
action dj–dk is enhancive, the slightly increasing dose of 
di would decrease the SCs of dj and dk while the slightly 
decreasing dose of dj or dk would increase the SC of di. 
Obviously, the changes on the NNP triad from two sides 
are consistent as well.

In a weakly balanced cluster, only the coinstantane-
ous changes of all drugs in a triad (ideally an NNN triad) 
can generate a consistent influence on the triad, or it 
generates an unpredictable influence. When the triad 
consisting of di, dj and dk is an NNN triad, the slightly 

Fig. 4  Community images of the DDI adjacent matrix. a Original DDI 
matrix, b rearranged DDI matrix upon three communities generated 
by Semi-NMF; c rearranged DDI matrix upon three communities 
generated by BRSNMF. Each pixel in the DDI matrix image represents 
a drug pair. Magenta pixels represent enhancive DDIs, cyan pixels 
represent degressive DDIs and black pixels are non-DDIs. The 
boundaries of communities are highlighted by white lines. The 
numbers of drugs in communities in all the images are exhibited as 
well. Semi-NMF generates the communities with larger variance of 
community sizes and cannot detect the weakly balanced community. 
In contrast, BRSNMF generates the communities which are less 
dispersed in terms of community size. More importantly, BRSNMF is 
able to detect a weakly balanced community

▸
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increasing dose of di would decrease the SCs of dj and 
dk however the degressive interaction between dj and dk 
could trigger an opposite influence on dj or dk. Obviously, 
two conflicted influences from two sides would result in a 
final unpredictable influence. The only possible condition 
to generate consistent influence on the triad is to increase 
doses of di, dj and dk with the right proportion to their 
original doses.

Remarkably, the dose change of drugs in an unbalanced 
triad (ideally a PPN triad) between two balanced clus-
ters surely trigger unpredicted influences on the triad. 
The similar interpretation to that of NNN triads can be 
drawn, but there is no condition to generate a consistent 
influence on the triad.

Similarly, it is easy to make an extended interpretation 
of the pharmacological meaning in terms of balanced 
l-cycles, which follows the naïve multiplication rule that 
the product of all the signs of a cycle’s edges is positive.

2.	 Potential application of balanced clusters

The clusters can be directly applied with the considera-
tion of drug intolerance. When multiple drugs in therapy 
are delivered throughout the body, any change triggered 
by their DDIs in the ADME (absorption, distribution, 
metabolism, and excretion) process would change their 
concentration in the blood.

In a strongly balanced cluster, for example, three drugs, 
Cyclosporine, Pravastatin, and Lovastatin forms a PPP 
triad, which increases their serum concentrations. Mean-
while, both of the first two have two degressive interac-
tions with another drug, Efavirenz (an NNP triad). Since 
the pharmacological change of even one drug in the bal-
anced triads definitely influences other drugs, a multiple-
drug treatment (e.g. the prophylaxis of graft rejection) 
involving them should investigate whether their interac-
tions break their individual therapeutic windows, which 
are the differences between their minimum effective 
concentration (MEC) and minimum toxic concentration 
(MTC) respectively. When the concentration of a drug 
within the blood is less than its MEC, the drug cannot 
give rise to the intended therapeutic effect. When its con-
centration is greater than its MTC, the drug will trigger 
an unintended adverse drug event.

In addition, the clusters can be used to find synergis-
tic drugs. For example, the pairwise interactions among 
Fluvoxamine (an antidepressant), Pregabalin (an anticon-
vulsant drug used for epilepsy and generalized anxiety 
disorder) and Magnesium sulfate (an anticonvulsant for 
pre-eclampsia and eclampsia) in a strongly balanced clus-
ter can boost their therapeutic efficacies (a PPP triad). 
Therefore, their combination can be a potential synergis-
tic multiple-drug treatment.

In general, after integrating pharmacological knowl-
edge of DDIs, these drug clusters can be applied to guide 
multiple-drug treatments, such as optimizing drug doses, 
alerting risks and discovering synergistic drugs.

3.	 Biological implication of balanced clusters

To understand the biological implication of the bal-
anced clusters, we finally investigate both the drugs 
within clusters and those between clusters by exploiting 
DBPs, which play important roles in pharmacodynamic 
and pharmacokinetic processes of drugs. After counting 
the numbers of non-target proteins and target proteins 
binding to each drug respectively, we calculate the aver-
ages of those numbers in each com cluster. The average 
numbers (an) of non-target proteins binding to a drug 
are 2.35, 5.16 and 3.17, while the average numbers (at) of 
target proteins binding to a drug are 4.12, 2.87 and 2.64 
in these three clusters respectively. The one-way analysis 
of variance across clusters on the two groups of numbers 
(with p value  =  2.22e−16 and 1.68e−07 respectively) 
shows that the drugs in different drug communities bind 
to significantly different numbers of non-target and tar-
get proteins on average. In particular, the investigation 
reveals interesting aspects: (1) drugs in the only weakly 
balanced community (the second one) tends to bind 
more non-target proteins than target proteins; (2) drugs 
in the first strongly balanced community (containing 
93.95% strongly balanced triads) tends to bind a fewer 
number of non-target proteins but more target proteins. 
This observation, largely revealing the underlying mecha-
nism of forming DDI, inspires us to propose a predictive 
model of comprehensive DDIs in the cold-start scenario.

Comprehensive DDI prediction in the cold‑start scenario
Recall that we use drug-binding proteins (DBP) as fea-
tures to perform DDI prediction (see also "BRSNMF-
based approaches for predicting potential comprehensive 
DDIs of new drugs" section). Considering these proteins, 
we generate the protein-profile feature as follows. Each 
drug is represented as a 1× 1642 binary vector, of which 
each element denotes whether or not a specific protein 
binds to it. Slightly different to community detection 
which focuses on balance structure DDI, DDI prediction 
emphasizes more on reconstruction error.

Parameter tuning in prediction
Before running the subsequent comparison, we first 
investigate how the parameter k (the dimension of latent 
space) influences the prediction by tuning its value from 
the list {rank(A)* (1/64, 1/32, 1/16, 1/10, 1/8, 1/6, 1/4, 1/2, 
1/1)}, where A is the training DDI matrix. The investiga-
tion on DB_V4 under 10-CV shows that the prediction 
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is the best in the case of k = rank(A)/10 (Fig. 5). Mean-
while, this value also meets the need of low-rank matrix 
factorization. As a consequence, we use this value of k 
when performing the following cold-start prediction 
tasks, which require to infer the interactions between 
new drugs and approved drugs.

Cold‑start DDI prediction boosted by DBP‑based feature
To demonstrate the effectiveness of DBP, we compare the 
DBP feature with the popular PubChem fingerprint fea-
ture under both LOOCV and 10-CV. The comparison is 
performed on DB_V4. Here, we adopt PubChem finger-
prints (V 1.3) to represent each drug as a 1× 881 ordered 
binary vector, of which each element denotes whether a 
specific chemical substructure (fingerprint) is contained 

in the drug or not. These substructures involve hierarchic 
element counts, rings in a canonic extended smallest set 
of smallest rings, simple atom pairs, simple atom nearest 
neighbors, detailed atom neighborhoods, simple smarts 
patterns, and complex smarts patterns.

Both the ROC curve and the PR curve account-
ing for LOOCV are illustrated in Fig.  6. In addition, 
we make a comparison under 10-CV and measured 
the prediction by the average AUROC and the aver-
age AUPR in all the rounds of 10-CV. The prediction 
achieved by DBP achieves AUROC  =  0.801  ±  0.019, 
AUPR = 0.634 ± 0.033 and MPR = 0.021 ± 0.017 while 
that achieved by PubChem fingerprints only achieves 
AUROC =  0.720 ±  0.018, AUPR =  0.455 ±  0.029 and 
MPR  =  0.026  ±  0.018. The comparisons under both 
LOOCV and 10-CV show that DBP is greatly superior to 
the PubChem fingerprints.

The results demonstrate the superiority of DBP fea-
tures. The underlying reason is that pharmacological 
DDIs are not direct or physical bindings, which are usu-
ally related to drug structures, but they are indirect inter-
actions where DBPs play as the mediator. This nature of 
DDIs is quite different from that of drug–target inter-
actions [35], which heavily rely on the direct binding 
between drug structures and protein pockets.

For example, the interactions between Ritonavir and 
Saquinavir are mediated by intestinal CYP3A4. In details, 
Ritonavir increases the bioavailability (the fraction of an 
administered dose of the drug that reaches the systemic 
circulation) of HIV protease inhibitors (e.g. Saquinavir), 

Fig. 5  Tuning the best dimension of the latent space
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because it strongly inhibits the activity of intestinal 
CYP3A4 (an enzyme DBP), which acts as a metabolizer 
of these HIV protease inhibitors so as to influence their 
absorption [40]. Furthermore, we calculated the Pearson 
correlation coefficients (PCC) between Ritonavir and 
Saquinavir with DBP-based features (PCC = 0.5961) and 
fingerprint-based features (PCC =  0.3624) respectively. 
The greater the PCC value, the better the features. The 
result shows that DBP is better than PubChem finger-
print when capturing the association between Ritonavir 
and Saquinavir.

On the other side, we check whether the higher 
dimension of features achieves a better prediction. 
First, after analyzing them by PCA, we find that the 
effective dimension (426) of DBP is actually less than 
that (576) of PubChem Fingerprint, though the for-
mer’s original dimension is greater than that of the lat-
ter. In addition, using the concatenation of DBP-based 
features and PubChem fingerprint-based features, we 
perform an extra experiment under 10-CV. Compared 
with DBP-based features (AUROC  =  0.801  ±  0.019 
and AUPR  =  0.634  ±  0.033), the result 
(AUROC =  0.804 ±  0.020 and AUPR =  0.636 ±  0.039) 
shows no significant improvement of DDI prediction. 
Obviously, compared with DBP, PubChem fingerprint 
doesn’t contain more information helpful to identify DDI. 
In short, the performance prediction doesn’t depend 
on the feature dimension but relies on the discriminant 
ability of feature, which reflects how well the feature 
can characterize DDI. Therefore, we believe that the 
proposed DBP-based feature is better than the popular 
fingerprint-based feature because the former is able to 
capture the nature of DDIs.

Accurate DDI prediction for new drugs by BRSNMF‑based 
approach
To test the effectiveness of our BRSNMF-based approach 
in the real scenario of newly given drugs, we make a 
version-independent validation, which uses the drugs 
in DB_V4 as the training drugs and those in DB_V5_Ex 
as the independent testing drugs respectively. The drugs 
pairs in DB_V4 are taken as training drug pairs, while the 
testing drug pairs are the pairs between the drugs in DB_
V4 and the drugs in DB_V5_Ex.

According to DrugBank, both the training pairs and 
the testing pairs have real labels, which indicate interac-
tions. In other words, we know the labels of the inter-
actions between the drugs in DB_V4 and the drugs in 
DB_V5_Ex. Thus, we use those labels in DB_V5_Ex (V5.0 
updated on 2017-7-6) to measure the prediction. Totally, 
there are 78.8% balanced triads (including PPP, NNP and 
NNN) and 21.2% unbalance triads (PPN) within the DDIs 
between DB_V4 and DB_V5_Ex. Again, DBP is used as 

drug features when running both our BRSNMF-based 
approach and the state-of-the-art approach, DDINMF 
[21].

During measuring the predictions, we first sort the 
testing drug pairs according to their predicting scores 
(can be positive, negative or near zero) generated by the 
predictive approaches. Because the labels of enhancive 
DDIs, degressive DDIs and non-interactions are +  1, 
− 1, and 0 respectively, there are three expectations on 
predicting results. It is anticipated that (1) enhancive 
DDIs tend to have positive scores. The greater the pre-
dicting score, the higher the chance the drug pairs are 
enhancive DDIs; (2) degressive DDIs tend to have nega-
tive scores. The smaller the predicting score, the higher 
the chance the drug pairs are degressive DDIs; (3) non-
interactions tend to have scores near to zero. The closer 
the value to zero, the higher the chance the drug pairs 
are non-interactive. In addition, the range of predicting 
scores also mainly depends on the value of parameter k. 
For example, the range of predicting scores generated 
by BRSNMF-based approach is [−  0.2873, 0.4691] in 
the case of k = 1 while that is [− 1.6770, 2.5097] in the 
case of k = rank(A)/2. The greater the value, the larger 
the range. Thus, it is inappropriate to set fixed cutoffs of 
scores to discriminant enhancive and degressive. We use 
the position in the sorted list of the testing drug pairs as 
the cutoff.

Then, top-n out of predicted DDIs are selected out 
and checked for enhancive DDIs. According to their real 
labels in DrugBank, the drug pairs with positive labels 
among the top-n candidates are counted. The accuracy 
of predicting enhancive DDIs is defined as the number 
of such drug pairs over n. Similarity, the number of drug 
pairs with negative labels among the bottom-n divided 
by n is just the accuracy of predicting degressive DDIs. 
In addition, since DrugBank updates itself every half year, 
considering some entries in DB_V5_Ex are updated, we 
further double check the prediction by the labels pro-
vided by the latest version of DrugBank (V5.1.1 updated 
on 2018-8-8).

Finally, the prediction performance is measured in 
the case of n = 5, 10, 20, 30, 40 and 50 respectively (see 
the detailed results in Additional file  1: VersionIndTest.
xslx). The ratios of correctly predicted DDIs are reported 
to measure the performance of the test (Table  4). The 
results show our BRSNMF-based approach achieves 
94% accuracy among top-50 enhancive candidates and 
86% accuracy among bottom-50 degressive candidates 
respectively. Like the metrics used in LOOCV, we also 
report the values of both AUROC and AUPR as the 
overall performance in the novel prediction. The overall 
performance of prediction achieved by our BRSNMF is 
AUROC|AUPR = 0.645|0.346 whereas that achieved by 
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DDINMF is AUROC|AUPR = 0.597|0.299. In summary, 
it is demonstrated that our BRSNMF is significantly 
superior to DDINMF in a real application.

Though both the prediction achieved by our BRSNMF 
in the top-50 and that in the bottom-50 are inspiring, it is 
noted that the overall performance of prediction can still 
be improved. For this reason, we investigate those incor-
rectly predicted DDIs. After checking them case by case, 
we dig out three causes of wrong predictions.

The first is named as false positive drug pairs, which are 
inaccurately labeled as DDIs in DrugBank Version 4 but 
correctly labeled as non-DDIs in DrugBank Version 5. 
For example, the older version of DrugBank records that 
Apraclonidine (a sympathomimetic used in glaucoma 
therapy) increases the atrioventricular blocking activities 
of Alprenolol and Bevantolol, whereas the newer version 
removes it.

The second one is, on the contrary, called as false nega-
tive drug pairs, which are wrongly labeled as non-DDIs in 
DrugBank Version 4 but are corrected as newly reported 
DDIs in DrugBank Version 5 (e.g. the pair of Valrubicin 
and Ciclosporin as well as the pair of Ergocalciferol and 
Calcitriol). As the newer version of DrugBank reports, 
Valrubicin (for treating bladder cancer) increases the 
nephrotoxic activities of Cyclosporine (a powerful immu-
nosuppressant with a specific action on T-lymphocytes), 
while the combined therapy of Calcitriol and Ergocalcif-
erol increases the risk or severity of adverse effects in the 
multiple-drug therapy.

The last one refers to missing DBPs. Some DBPs are not 
collected in DrugBank such that two interacting drugs 
(e.g. Ritonavir and Darunavir; Amiodarone and Sofos-
buvir) have no common DBPs in the dataset. However, 
Ritonavir increases the bioavailability of Darunavir in 
fact, because it strongly inhibits the activity of intestinal 
CYP3A4 (a DBP), which acts as a metabolizer of Daru-
navir so as to influence its absorption in HIV therapy 
[40]. Similarly, the preferential binding of Amiodarone 
to Albumin (one of plasma proteins) forces Sofosbuvir to 
redistribute and bind to other unexpected proteins, such 
that an unexpected adverse effect (severe symptomatic 

bradycardia) occurs when Amiodarone joins into Sofos-
buvir-containing HCV therapy [41].

Therefore, it is anticipated to improve the existing pre-
diction by two ways in the coming future. One is to build 
a better dataset containing a fewer number of both false 
positive drug pairs and false negative drug pairs. Another 
is to recover missing DBPs or update DBPs for drugs.

Conclusions
It is more useful to know whether or not a drug pair is 
an enhancive DDI or a degressive DDI than to know 
whether or not a drug pair is a DDI. Without consider-
ing the pharmacological changes caused by DDIs, most 
existing approaches only report a binary prediction. Fur-
thermore, the occurrence of both enhancive and degres-
sive DDIs is not random but follows a weakly balanced 
relationship. However, none of existing approaches inves-
tigates and leverages this intrinsic property, which is one 
of the most crucial steps to understand high-order DDIs 
(involving three or more drugs) when treating complex 
diseases [7].

In this work, after representing the comprehensive DDI 
network containing pharmacological changes as a signed 
network, we’ve leveraged its weakly balanced structure 
to design a novel algorithm of balance regularized semi-
nonnegative matrix factorization (BRSNMF). First, the 
proposed algorithm has been directly applied to detect 
drug communities. The comparison with the traditional 
Semi-NMF shows that each of the drug communities 
achieved by BRSNMF contains substantial drugs and 
their sizes have less dispersion. More importantly, these 
communities exhibit the weakly balanced relationship 
among drugs as well as their pharmacokinetic and phar-
macodynamic significance in terms of drug-binding pro-
teins. This finding helps to understand how high-order 
DDIs work.

Secondly, focusing on the scenario of predicting DDIs 
for newly given drugs, BRSNMF has been used to design 
a predictive approach for comprehensive DDI predic-
tion. The experiments under LOOCV and 10-CV show 
that our DBP features are much better than popular 
PubChem fingerprints because pharmacological DDIs 

Table 4  The ratios of correctly predicted DDIs in top-50 and bottom-50 candidates

Italic values indicate the better results where BRSNMF outperforms DDINMF

Enhancive Top 5 (%) Top 10 (%) 20 (%) 30 (%) 40 (%) 50 (%)

DDINMF 40 60.0 80.0 83.3 85.0 88.0

BRSNMF 100 80.0 90.0 90.0 92.5 94.0

Degressive Bottom 5 (%) Bottom 10 (%) 20 (%) 30 (%) 40 (%) 50 (%)

DDINMF 100 80.0 75.0 80.0 80.0 82.0

BRSNMF 100 80.0 80.0 83.3 85.0 86.0
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are not structure-derived interactions between drugs, 
but indirect protein-mediated interactions. Moreo-
ver, the version-independent test demonstrates that our 
BRSNMF-based predictive approach achieved the inspir-
ing prediction of comprehensive DDIs and outperforms 
the state-of-the-art approach DDINMF due to its explicit 
modeling of the weakly balanced relationship among 
drugs. This predictive approach helps screen DDIs with 
the change of pharmacological effects.

Finally, it is anticipated that the BRSNMF-based 
approach will be able to achieve better DDI prediction 
by the better dataset with a fewer of both false positive 
drug pairs and false negative drug pairs, as well as more 
drug features from other drug attributes, especially pro-
tein-related properties (e.g. protein-protein network, side 
effects, ATC) in the coming future.

Additional file

Additional file 1. Predicted results of version-independent test.
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