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Abstract 

The reproducibility of experiments has been a long standing impediment for further scientific progress. Computa-
tional methods have been instrumental in drug discovery efforts owing to its multifaceted utilization for data col-
lection, pre-processing, analysis and inference. This article provides an in-depth coverage on the reproducibility of 
computational drug discovery. This review explores the following topics: (1) the current state-of-the-art on reproduc-
ible research, (2) research documentation (e.g. electronic laboratory notebook, Jupyter notebook, etc.), (3) science of 
reproducible research (i.e. comparison and contrast with related concepts as replicability, reusability and reliability), (4) 
model development in computational drug discovery, (5) computational issues on model development and deploy-
ment, (6) use case scenarios for streamlining the computational drug discovery protocol. In computational disciplines, 
it has become common practice to share data and programming codes used for numerical calculations as to not only 
facilitate reproducibility, but also to foster collaborations (i.e. to drive the project further by introducing new ideas, 
growing the data, augmenting the code, etc.). It is therefore inevitable that the field of computational drug design 
would adopt an open approach towards the collection, curation and sharing of data/code.
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Introduction
Traditional drug discovery and development is well 
known to be time consuming and cost-intensive encom-
passing an average of 10 to 15 years until it is ready to 
reach the market with an estimated cost of 58.8 billion 
USD as of 2015  [1]. These numbers are a dramatic 10% 
increase from previous years for both biotechnology 

and pharmaceutical companies. Of the library of 10,000 
screened chemical compounds, only 250 or so will move 
on to further clinical testings. In addition, those that are 
tested in humans typically do not exceed more than 10 
compounds [2]. Furthermore, from a study conducted 
during 1995 to 2007 by the Tufts Center for the Study 
of Drug Development revealed that out of all the drugs 
that make it to Phase I of clinical trials, only 11.83% were 
eventually approved for market [3]. In addition, during 
2006 to 2015, the success rate of those drugs undergoing 
clinical trials was only 9.6% [4]. The exacerbated cost and 
high failure rate of this traditional path of drug discovery 
and development has prompted the need for the use of 
computer-aided drug discovery (CADD) which encom-
passes ligand-based, structure-based and systems-based 
drug design (Fig. 1). Moreover, the major side effects of 
drugs resulting in severe toxicity evokes the screening of 
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ADMET (adsorption, distribution, metabolism, excre-
tion and toxicity) properties at the early stage of drug 
development in order to increase the success rate as well 
as reduce time in screening candidates  [5]. The process 
of CADD begins with the identification of target or hit 
compound using wet-lab experiments and subsequently 
via  high-throughput screening (HTS). In particular, the 
typical role of CADD is to screen a library of compounds 
against the target of interest thereby narrowing the can-
didates to a few smaller clusters [6]. However, owing to 
the high requirement of resources for CADD coupled 
with its extensive costs, opens the door for virtual screen-
ing methods such as molecular docking where the known 
target of interest is screened against a virtual library of 
compounds. Although this method is highly effective, 
a crystal structure of the target of interest remains the 
main criteria required of this approach in generating 
an in silico binding model. However, in the absence of a 
crystal structure, homology modeling or de novo predic-
tion models can still be obtained against the large library 
of compounds to acquire compounds with good bind-
ing affinity to the target  [7] which are identified as hits 
and could be further developed as lead compounds [8]. A 
conceptual map on the experimental and computational 
methodologies as applied to the drug discovery process is 
summarized in Fig. 2. 

In recent years, the expansion of data repositories 
including those with chemical and pharmacological data 
sets, has significantly increased the availability of large-
scale open data for drug discovery. In addition, more 
data are being deposited into these domains on a daily 
basis, with some repositories containing tens of millions 
of compounds (e.g. PubChem and ZINC databases) [9]. 
The availability of such large-scale data sets has had a sig-
nificant impact on the drug discovery process. Moreover, 
this process may help address many of the unmet needs 
in drug discovery and design such that the access to these 
data may help with the rapid identification of compounds 
to validate targets or profile diseases which will further 
encourage the development of new tools and predictive 
algorithms. Furthermore, large bioactivity data sets can 
be used for the identification of quantitative structure–
activity relationships (QSAR) or classification models, 
allowing prediction of compound activities from their 
structures. Such predictions can contribute to molecular 
target elucidation, drug ADMET prediction and potential 
drug repurposing [10]. However, with all the predictive 
methods, the quality and relevance of the data acquired 
are paramount in determining the accuracy and appli-
cability of the resulting models. Therefore, as data sets 
become more readily available due to the open science 
initiative, the emphasis has now moved towards qual-
ity, rather than the quantity of raw data. Indeed, many 
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Fig. 1  Schematic summary of the drug discovery process overlayed with corresponding computational approaches
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analyses have been published assessing the quality of 
screening libraries that identify compounds responsible 
for many of the false-positive results [11, 12] or investi-
gate compound structure accuracy in various reposito-
ries [13, 14]. Hence, any progress made within just this 
one area will have a profound impact on improving the 
development of novel and safe drugs. Nevertheless, with 
the increasingly rapid growth of these public data sources 
therefore efforts in ensuring the quality and interoper-
ability will be essential for maximizing the utilization of 
data.

In the midst of big data expansion (i.e. borne from 
omics data) that are available for computational drug 
discovery, proper efforts for ensuring the quality of these 
data are made possible through data curation and pre-
processing as carried out by database and repository pro-
viders. Workflows and pipelines in the form of markup 
languages, codes or software tools have become instru-
mental in ensuring the reproducibility of computational 
research as it helps to materialize the actual steps and 
procedures taken during the entire computational study. 

Discussion on the availability and current efforts under-
taken in the field of computational drug discovery (i.e. 
also encompassing bioinformatics and cheminformatics) 
in regards to research reproducibility is provided in this 
review article. During the revision phase of this manu-
script submission, an excellent commentary article by 
Clark [15] addressing the importance of reproducibility 
in cheminformatics was recently published. Moreover, a 
blog post by cheminformatic researchers  [16] also reaf-
firmed the significance of this point and the timely man-
ner of the topic of this review article so as to encourage 
further developments and paradigm shifts in computa-
tional drug discovery and neighboring fields (e.g. bioin-
formatics and cheminformatics) pertaining to research 
reproducibility.

Research documentation
Scientific experiments have long preceded digital logging 
of laboratory activities. Documentation of experimental 
results has traditionally been kept within the confine-
ment of paper-based notebooks whereby the scientific 
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benefits of which is to allow subsequent reproduction 
of the documented experiment, while its legal use is to 
serve as a proof of inventorship [17]. The reporting of 
science is fundamental to the scientific process, which, if 
done clearly and accurately, can help advance knowledge 
and its reproducibility [18]. All professionals working in 
life sciences are familiar with the importance of keeping 
laboratory notebooks. Although, science as a field has 
advanced over the centuries, the methods of recording 
data (i.e. in a paper-based, inked and bound notebook) 
has remained unchanged. In addition, the current repro-
ducibility crisis has put the spotlight on data recording. 
Therefore, unsurprisingly, many industries and laborato-
ries are now shifting to a digital form of record keeping, 
the electronic laboratory notebooks (eLNs) [19].

eLNs have been introduced as a digital alternative to 
the paper-based version but with enhanced capabilities 
such as search capability, integration with instrumenta-
tion, etc. [20]. Scientists are increasingly adopting the use 
of eLNs in their research laboratories owing to the inher-
ent need to organize the growing volume of biological 
data [21]. Recently, Schnell [22] had proposed ten simple 
rules for a computational biologist’s laboratory notebook, 
which highlights the importance of documenting all the 
minute details that were carried during the course of pro-
ject from start to finish (i.e. applicable to all scientific dis-
ciplines) while also making use of version control, virtual 
environments and containers (i.e. applicable to compu-
tational disciplines). Particularly, which software version 
was used, which parameter values were used, which 
specific algorithms and specific options were utilized 
for the calculation, etc. Moreover, scientists are making 
these notebooks publicly available so as to support the 
open science initiative (i.e. also termed “open notebook 
science”)  [23, 24] and in doing so foster the sharing of 
unpublished experimental data and analysis (i.e. known 
as “dark data”). These interactive notebooks (i.e. also 
known as iPython/Jupyter notebooks) have evolved to 
the point that it is possible for the code used to perform 
the data analysis to be shown alongside the explanatory 
text and visualizations (e.g. images, plots, etc.), thereby 
affording easy comprehension of the experimental results 
and its underlying code, thus facilitating reproducible 
research.

The iPython notebook was created in 2001 by Fernando 
Perez and has since evolved to the more general and 
powerful Jupyter notebook [25] with support for more 
than 40 programming languages (e.g. Python, R, Javas-
cript, Latex, etc.). For the sake of data sharing, it is com-
mon practice to store the Jupyter notebooks (i.e. used 
hereon to also refer to the iPython notebook) on GitHub 
(i.e. or other web repository such as BitBucket). Such 
notebook files can then be rendered as static HTML via 

the nbviewer [26]. Recently, GitHub also made it possible 
for Jupyter notebook files to render directly on its reposi-
tories. Owing to the static nature of the rendered note-
book the resulting HTML is consequently not interactive 
and therefore not amenable to modifications. A first step 
towards solving this limitation is made by the Freeman 
lab at Janelia Research Campus in their development of 
binder  [27], a web service that converts Jupyter note-
book files hosted on GitHub to executable and interactive 
notebooks. Google CoLaboratory [28] is another inter-
face which utilizes the Jupyter notebook environment 
for the dissemination of research and education. Google 
Colaboratory is a free platform whereby projects can be 
run completely on the cloud, without the need for any 
software setups while the “notes” are stored entirely on 
Google Drive and can be easily accessed and shared.

At the other end of the spectrum are cloud-based word 
processors such as Google Docs, Overleaf, ShareLa-
tex and Authorea that facilitate collaborative writing of 
experimental findings and results in the form of manu-
scripts, books and reports. A distinctive feature of these 
applications is the possibility for several users (i.e. who 
can be physically located in different parts of the world) 
to be able to work on the same document at the same 
time. Most of these web applications serve as only word 
processors that house the text of a manuscript but does 
not allow integration with the Jupyter notebook. In fact, 
only Authorea integrates interactive Jupyter notebooks 
(i.e. also hosted by Authorea) into their application so 
that users can play around with the parameters and come 
up with customized figures and plots.

Science of reproducible research
Reproducibility crisis
According to an online survey conducted by Nature of 
1576 researchers, it was revealed that 52% of research-
ers agreed that there is a significant reproducibility cri-
sis while 38% agreed that there is a slight crisis. On the 
other hand, 3% of those surveyed do not think that there 
is such a reproducibility crisis while 7% of researchers are 
not aware of its very existence [29]. These results suggests 
confusing viewpoints as to what constitutes reproducible 
research. In addition, when asked to identify the problem 
associated with this crisis, the same survey reported over 
60% of respondents believe that the pressure to publish 
and selective reporting contributed to the problem. Fur-
thermore, lesser contributing factors reported were una-
ble to replicate the work in the lab, low statistical power 
and obstacles such as reagent variability or the use of spe-
cific techniques that are difficult to replicate.

The concept of reproducibility in science depends 
on the dissemination of knowledge and the reproduc-
ibility of results. To facilitate this, the accurate and clear 
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reporting of science should be a fundamental part of the 
scientific process. Plavén-Sigray et  al. [18] believe that 
the readability of a scientific research is one of the main 
factors for reproducible and accessible literature. From 
a compilation of 709,577 abstracts from 123 scientific 
journals published between 1881 and 2015 on biomedi-
cal and life sciences coupled with readability formulas, 
the authors concluded that the readability of scientific 
literature has been decreasing over time. Lower read-
ability could in turn discourage accessibility, particularly 
from non-specialists and the importance of comprehen-
sive texts in regards to the reproducibility crisis cannot 
be ignored.

Another aspect of the reproducibility crisis can be 
seen during the data analysis whereby it can be difficult 
for researchers to recognize p-hacking also known as 
data dredging [30] (i.e. the phenomenon where research-
ers select statistical analysis which portray insignificant 
data as significant) due to confirmation and hindsight 
biases which encourage the acceptance of preconceived 
outcomes that fit expectations  [31]. Hence, there is an 
increased concern that most published articles are based 
on false or biased results  [32]. In addition, several stud-
ies have pointed out that the high rate of non-replicable 
discoveries is a consequence of basing conclusive find-
ings on a single study assessed via only the statistical sig-
nificance (i.e. the p-value) [32–34]. Therefore, in order to 
combat this disturbing trend, striving towards the FAIR 
(Findable, Accessible, Interoperable and Reproducible) 
[35] principle in research practices can help to ensure 
that models and studies are FAIR for them to be con-
sumed and integrated on-demand. Hence, studies using 
open data derived from analysis according to the FAIR 
principles, will pave the way towards iteratively better 
science with higher confidence in the reproducibility of 
research [36].

Reproducibility versus replicability
It is important to note that the terminology found across 
the scientific literature such as reproducibility, replica-
bility, reusability, recomputibility and their associated 
definitions are not standardized and thus has led to con-
fusion regarding their usage. “Reproducibility” has been 
defined in the dictionary as “the ability to produce, form 
or bring about again, when repeated”  [37]. In the con-
text of computational research, the term “reproducible 
research” was first coined by Jon Claerbout in 1990, the 
geophysicist who implemented the standard for main-
taining and building executable programs from the 
source code leading to the construction of computational 
results known as the Stanford Exploration Project in pub-
lished articles [38]. An important issue for reviewers and 
authors alike, reproducibility acts as a bedrock principle 

for the validation in experimental scientific research. 
However, with such emphasis placed on reproducibility 
in experimental sciences, two conspicuous discrepan-
cies were highlighted by Casadevall and Fang [39]. First, 
while the work conducted and published by scientists are 
expected to be reproducible, most scientists do not par-
take in replicating published experiments or even read 
about them. Furthermore, despite the obvious prerequi-
site in most reputable journals whereby, all methods must 
be reported in adequate detail so as to allow replication, 
no manuscripts highlighting replicated findings without 
the discovery of something novel are published. Thus, 
the reproducibility of any given published research is 
assumed, yet only rarely is that notion tested. In actuality, 
the reproducibility of experiments are only highlighted 
when a given work is called into question  [40]. Hence, 
the consistency of this basic supposition relies heavily 
on integrity of the authors publishing the results and the 
trust afforded to them by the publishers and readers [39]. 
Ironically, suspicions of data falsification are sometimes 
heightened when results are deemed as “too good to be 
true” [40]. Therefore, this replication debate provides an 
opportunity to redefine the differences between replica-
bility and reproducibility.

As such, strict definitions of both terms are also avail-
able and could be useful in discerning slight differences 
that occur by either repeating or reproducing an experi-
ment/workflow. According to the Guide to the expres-
sion of uncertainty in measurement [41], reproducibility 
is defined as the “closeness of the agreement between the 
results of measurements of the same measure and car-
ried out under changed conditions of measurement” while 
repeatability or replicability is defined as the “closeness 
of the agreement between the results of successive meas-
urements of the same measure and carried out under the 
same conditions of measurement”. Although the mis-
match of both terms is not so critical in some cases, it is 
important to clarify the main differences. For example, if 
the experiment/model conditions are close or identical, 
they should be successfully repeated (i.e. repeatability 
or replicability). On the other hand, if the experimental/
model conditions are changed to some degree, the exact 
or close match results may not be obtained but the meth-
odology should be sound (i.e. reproducibility).

Reusability versus reliability
In life sciences, the reliability of a published protocol is 
a pressing matter upon implementation. Reusability is 
more prevalent in computer science in which codes cre-
ated by an individual or groups of individuals that are 
shared on public repositories, can be reused by others as 
well as facilitate future work to be built upon it. Hence, 
enabling reusability represents an important catalyst that 
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would help to advance the field. Conventionally, scientific 
research relies on results from independent verification. 
Specifically, when more people verify an observation or 
hypothesis, the more trustworthy it becomes. A conjec-
ture, on the other hand, without verification is therefore 
not considered to be well-thought-out. Thus, replica-
tion represents an important facet of verification within 
which theories are confirmed by equating predictions 
in relation to reality. For computational research how-
ever, no established verification practices exist as of yet 
[42]. Although a research may be reproducible, the qual-
ity, accuracy or validity of the published results are not 
guaranteed. Therefore, simply bringing the notion of 
reproducibility to the forefront and making it as routine 
as keeping a laboratory notebook, would help set the 
stage for a reproducible atmosphere. Encouragingly, the 
minimum information checklist brought together under 
the umbrella of the Minimum Information for Biologi-
cal and Biomedical Investigations (MIBBI) project [43] 
has helped to ensure that all pertinent data is provided 
by researchers. Furthermore, bioinformatics software 
typically involve a wide variety of data formats which 
can make the execution of replicability a little more dif-
ficult. However, softwares pertaining to data exchange 
and analysis such as the Proteomics Standard Initiative 
for molecular interactions (PSI-MI) for proteomics [44] 
and the Biological Pathway Exchange (BioPAX) language 
[45] representing metabolic and signaling pathways, 
molecular and genetic interactions and gene regulation 
networks, have been developed to improve this. In addi-
tion, the Workflow4Ever project  [46] caters to the same 
aim using a different approach.

The underlying aim of reproducing any given research/
experiment is so that the work being proposed can 
be extended rather than just to confirm it. It also then, 
makes perfect sense that the extensibility of methods in 
the computational realm is taken into account during the 
design phase  [47]. Conducting research can, in this day 
and age, no longer be a lone endeavour; rather, collabora-
tions have permanently made their way into the sciences. 
In that respect, many bioinformatic tools have been 
developed under a joint effort where one group extended 
the work of another group such as the Bioconductor [48] 
and Galaxy [49–51] projects. In addition, a tool specifi-
cally made for analyzing phylogenetic data, Beast 2 [52] 
and Beast 2.5  [53], emphasizes modular programming 
techniques into its software in order to allow the software 
to be extensible by users. Furthermore, the Jupyter Note-
book [25] offers a dynamically updating, error-correcting 
tool for the publication of scientific work, thus facilitat-
ing extensibility. In addition, protocols.io [54] is an open 
access repository for scientific protocols that allow lab 
members to write and edit collaboratively.

This debate further behooved the question as to who 
would benefit from the detailed accumulation of meth-
ods in scientific papers or codes shared on various virtual 
platforms. Perhaps, it would be most advantageous for 
the new scientist as they can learn to use novel software/
protocol without going into too much detail and without 
having to write the code themselves. In addition, it allows 
the general public to make use of, and maneuver a mini-
mal working environment while saving time which could 
possibly provide a fresh perspective to existing research 
data.

Open Science
In the last decade or so, the sharing of scientific data has 
been promoted by a growing number of government 
and funding agencies [55, 56]. As such, open access to 
data from research networks, governments, and other 
publicly funded agencies has also been on the rise given 
the policies that promote them [57]. However, the shar-
ing of data in terms of policies varies dramatically by 
field of research, country, and agency, yet many of their 
goals are conjoint. Upon analysis of these policies, Borg-
man  [58] found that the data sharing policies are based 
on four main features (i.e. reproducible research, mak-
ing data available to the public, influencing investments 
in research, and advancing research and innovation). 
Epistemically, the impulse for the production of new 
knowledge with the reuse of data through open sources, 
is the key take away from these arguments [35, 59]. The 
proposed benefits of sharing can only be accomplished 
if and when the data is shared and/or reused by others 
[58]. Hence, “data sharing” refers to the idea and imple-
mentation of data release and in its simplest form, is the 
act of making data readily and easily available and acces-
sible [60]. Data sharing thus, encompasses many means 
of releasing data, while saying little about the usability of 
those data. Some ways whereby researchers share their 
data are private exchanges, posting data sets on websites 
(e.g. GitHub or Figshare); depositing data sets in archives 
or repositories (e.g. PubChem or ChEMBL); and supple-
mentary materials provided in research articles [61]. Data 
papers represent a newer avenue in the research field 
whereby descriptions similar to the “Methods” section of 
a traditional research article are published with greater 
details regarding the processes used for data collection, 
experimentation and verification [62, 63].

Furthermore, reproducibility can be seen to critically 
affect various aspects of research, especially in the field of 
science [29]. However, these days bioinformatics plays a 
distinct role in many biological and medical studies [64]. 
Thus, a great effort must be made to make computational 
research reproducible. As such, many reproducibility 
issues that arise in bioinformatics may be due to various 
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reasons such as version of bioinformatics software, com-
plexity of its pipeline and workflow, technical barriers 
ranging from insufficient data to hardware incompat-
ibility, etc. [65]. This crisis has been described by Kim 
et  al.  [66] whereby the authors compare the hidden 
reproducibility issues to an iceberg which is only noticed 
at a fraction of its actual size, highlighting the significant 
gap between the apparent executable work (i.e. portion of 
iceberg that can be seen above water) and the necessary 
effort required to practice (i.e. the full iceberg).

To deal with this reproducibility crisis, Sandve et  al. 
[67] proposed ten simple rules for reproducible compu-
tational research, through which the authors encourage 
researchers to responsibly and consciously make small 
changes during their computational workflow in order 
to achieve reproducibility habits that benefit not only the 
researchers but their peers and the scientific community 
on the whole. In our humble opinion, one of the most 
important point from the article stressed the importance 
of publicly sharing the data and source code so as to fos-
ter reproducibility of the work and in turn move science 
forward. One of the projects that implemented most 
rules laid out by Sandve et al. is the Bioconductor project 
[48] which is an open software that encourages collabo-
rations in the fields of computational biology and bioin-
formatics. In addition, BaseSpace [68] and Galaxy  [51] 
represent examples of both commercial and open-source 
solutions, that partially fulfill the ten simple rules laid 
out in the aforementioned review. However, workflow 
customizations on such environments are not imple-
mentable, for example, BaseSpace have strict application 
submission rules and being cloud based, have to cope 
with ethical and legal issues [69].

The applications and pipelines in bioinformatics require 
a substantial effort to configure, therefore container-
based platforms, such as Docker  [70], have emerged to 
allow the deployment of individual applications that have 
an isolated environment for the installation and execu-
tion of a specific software, without affecting other parts 
of the system. In this regard, many docker-based plat-
forms have been produced such as BioContainer  [71], a 
community-driven, open-source project based on the 
Docker container that can be easily accessed via GitHub; 
Bio-Docklets [72], a bioinformatics pipeline for next gen-
eration sequencing (NGS) data analysis; and Dugong 
[73], a Ubuntu-based docker that automates the instal-
lation of bioinformatics tools along with their libraries 
and dependencies on alternate computational environ-
ments. The above-mentioned platforms utilize the Jupy-
ter Notebook as an integration platform for delivery 
and exchange of consistent and reproducible protocols 
and results across laboratories, assisting in the devel-
opment of open-science. In addition, the Reproducible 

Bioinformatics Project [74] is a platform that distributes 
docker-based applications under the framework of repro-
ducibility as proposed by Sandve et al. Furthermore, the 
more recently established Human Cell Atlas [75] is an 
ambitious project encompassing more than 130 biolo-
gists, computational scientists, technologists and clini-
cians. Their aim is to help researchers answer questions 
pertaining to the human body in diverse biological fields. 
However, to provide maximum impact and continued 
collaborations, the project will be a part of open science 
on multiple levels to ensure that the results are of high 
quality and are technically reproducible. The initiative 
currently includes members from 5 continents and more 
than 18 countries, including Japan, Israel, South Africa, 
China, India, Singapore, Canada and Australia. The work 
conducted by this initiative in a large-scale international, 
collaborative and open effort may bring different exper-
tise to the problems and could dramatically revolutionize 
the way we see our cells, tissues and organs.

Computational reproducibility ecosystem
So the question is, how does one go about making their 
own research reproducible? For a computational life sci-
entist there are a plethora of resources that are enabling 
factors for data-driven research and it is the intent of 
this section to attempt to provide a broad if not exten-
sive coverage. Conceptually, a reproducible ecosystem 
could be thought of as environments or enabling factors 
that, on one end, allow the practitioner to archive and 
share their data and codes while on the other end, allow 
third-party users to gain access to these resources so that 
they can build upon them in their own independent pro-
jects. A more in-depth coverage of this topic is provided 
elsewhere [76, 77]. Traditionally, data (and rarely codes) 
accompanying a research article containing computa-
tional component(s) are provided in the Supplementary. 
In recent years, several web-based services are available 
as enabling proponents for computational reproducibility 
as will be discussed hereafter.

Data repository is a relatively general term used to 
reference a storage site specifically delegated for data 
depositions. As part of the reproducibility era, many 
appropriate public data depositories are now available 
such that, authors are able to deposit their raw research 
data into discipline specific and community-recognized 
repositories (i.e. GenBank, PDB, PubChem, etc. for 
discipline specific and figshare, Dryad digital reposi-
tory, Zenodo, Open science framework, etc. for general 
repositories) [78]. The Dryad digital repository [79] is 
an open, curated, reusable and easily citable resource for 
scientific data. In addition, Dryad was initiated as a non-
profit organization employing the joint data archiving 
policy (JDAP) for journal submissions with integrations. 
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Moreover, DryadLab  [80], a project of the Dryad digi-
tal repository, represents an open-licensed educational 
module which has been developed by collaborations 
with researchers and educators for students of all levels 
(e.g. secondary, undergraduate and graduate) to make 
use of real data in their work. Furthermore, figshare [81], 
a website conceived by Mark Hehnel, is a platform 
whereby scientists can deposit all of their data which, 
when uploaded, is given a citable digital object identi-
fier (DOI) based on the Handle System thereby ensur-
ing efficient searches and security of the stored data for 
long-term access. Therefore, the massive amount of data 
accumulated through scientific research activities that 
never get published, can be shared. This in turn could 
drastically reduce the expenses involved with the attempt 
to duplicate experiments  [82]. Moreover, Figshare also 
encourages the deposition of data that has been gener-
ated but never published. Similarly, Zenodo  [83] is an 
open research repository developed by OpenAIRE and 
CERN in 2013 based on the Invenio digital library frame-
work which also supports DOI versioning for research-
ers of all fields. Additionally, the reporting of research 
funded by the European Commission via OpenAIRE 
is also integrated into Zenodo whereby all research is 
stored in the cloud. Furthermore, the Open Science 
Framework (OSF) [84] is a cloud-based tool promoting 
the open and centralized management of scientific work-
flows at all stages of the research process, with integra-
tions from many other data hosting/repository services 
(e.g. Dropbox, GitHub, Google Drive, figshare, etc.). The 
OSF was developed in 2013 by a non-profit organization 
known as the Center for Open Sciences (COS) [85] for 
conducting research that supports and builds the scien-
tific community by promoting the reproducibility and 
integrity of research. In addition, OSF not only supports 
researchers in the scientific community, but also software 
developers and publishers allowing for institutions to 
create and manage projects which can be shared via post-
ers and presentations in meetings and conferences  [86]. 
Additionally, publishers are further facilitating data shar-
ing by establishing data journals that allow research-
ers to share their data in publication format that comes 
equipped with citable bibliographic details and DOI (i.e. 
without the need to provide full analysis that is typical of 
full-length research articles). Notable examples include 
Nature’s Scientific Data [87], Elsevier’s Data in Brief 
[88], MDPI’s Data  [89] as well as F1000Research [90]. It 
is also worthy to note that pre-prints also represents an 
important source for disseminating not only data papers 
but also full-length research articles while the actual 
manuscript may be under the peer-review process. Nota-
ble pre-print journals include arXiv [91], bioRxiv  [92], 
ChemRxiv [93] and PeerJ Preprints [94].

Code repositories act as an archive for file and web 
facilities which are deposited either publicly or privately. 
Most often, they are used by open-source software pro-
jects as they allow developers to submit organized 
patches of code into the repositories supporting version 
control. Some of the main examples include GitHub and 
BitBucket. GitHub is a web-based, distributed version 
control system that allows developers to collaborate with 
people anywhere in the world, using a single codebase on 
the GitHub web interface. Both small and large projects 
can be handled with speed and efficiency using GitHub. 
Similarly, BitBucket [95] is a Git and Mercurial code man-
agement and collaboration platform used by professional 
teams to build, test and deploy software. A special fea-
ture included in BitBucket known as pull requests, allows 
code review that results in a higher quality of the code 
produced which can also be shared amongst the team. 
In addition, branch permissions in the BitBucket soft-
ware provide access control thereby ensuring that only 
the right people are able to make changes to the code. It 
should be noted that not all codes and data can be made 
publicly available and in such circumstances, private 
repositories such as GitLab  [96] represents a lucrative 
solution. Furthermore, cloud-hosted source reposito-
ries such as Assembla and Google Cloud Platform, pro-
vide storage facilities where the code can be kept secure 
without the threat of a hardware collapse. Assembla [97] 
represents the only multi-repository provider used for 
hosting repositories (e.g. Subversion, Git and Perforce) in 
the cloud that also answers the requirements for compli-
ance. Assembla also provides the use of cross-platform 
applications which can integrate seamlessly with other 
modern cloud services such as JIRA, Jenkins and Slack. 
The Google Cloud Platform [98] on the other hand, uti-
lize Git version control for supporting collaborations of 
various applications, including those running on the App 
Engine (i.e. a cloud computing platform for hosting web 
applications) and the Compute Engine (i.e. the service 
component of the Google Cloud Platform). Google Cloud 
also provides a source browser through which, the view-
ing of uploaded repository files is possible. Moreover, it is 
able to integrate source code already present on GitHub 
or BitBucket seamlessly onto its cloud platform.

Interactive code platforms such as Binder and Code 
Ocean, allow subscribers to collaborate in real-time 
via a remotely hosted web server without the need for 
software installations. Binder [27] allow subscribers to 
deposit their GitHub repositories containing the Jupyter 
notebook via a URL, which is then used to build a Binder 
repository. Dependency files from the uploaded environ-
ment generates a Docker image of the repository. Fur-
thermore, a JupyterHub server hosts repository contents 
thereby allowing easy access to live environments as well 
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as facilitate sharing with others using a reusable URL. An 
article by Sofroniew et al. [99] on neural coding published 
in eLife made use of Binder to share data on all neural 
recordings. Furthermore, an article published in Nature 
by Li et al. [100] on the robustness of neural circuits, used 
the Binder platform to share their computational simu-
lation results. In addition, Code Ocean [101] is a cloud-
based computational platform that allows users to share 
and run codes online, thus encouraging reproducibility. 
Partnership between Code Ocean and publishers would 
further encourage reproducibility in which readers can 
gain access to the executable algorithms right from the 
published articles as is the case for IEEE journals [102].

Taken together the aforementioned resources supports 
the hosting, using and sharing of data/code, which sets 
the stage for the paper of the future as also discussed by 
C. Titus Brown in a Nature TechBlog  [103]. Brown also 
suggests that non-technophiles can learn the tools of the 
trade that facilitates computational reproducibility by 
attending training workshops such as those provided by 
Software Carpentry [104] and Data Carpentry [105].

Model development in computational drug 
discovery
In silico models can be generated to study a wide array 
of chemical and biochemical phenomenon. In this sec-
tion, we consider aspects of the model building process 
and key issues on what is needed to generate sufficiently 
accurate, reproducible models. We consider the full range 
of computational models ranging from ligand-based 
cheminformatic methods and molecular mechanics-
based models to high-level structure-based simulations 
involving protein-ligand docking or protein-substrate 
reactivity.

In the context of computational drug discovery, it is in 
our view that it is important to differentiate between the 
reproducibility and the predictability of a computational 
model. The former relates to how accurately subsequent 
predictions on the same compounds change over time 
when compared to that proposed using the originally 
developed computational model. Alternatively, repro-
ducibility could also relate to the model building pro-
cedure, whether the data was sufficiently sampled such 
that repeating the process would not lead to dramatically 
different results. In most cases, differences can occur 
between different models that depends on how the data 
sets were sampled and how the models were generated, 
implemented or maintained. For example, deviations can 
occur if: (1) an unrepresented data set are selected for 
model building, (2) following implementation a different 
variant of a particular descriptor engine is used for the 
model (i.e. clogP, AlogP, etc.) or (3) during the production 
phase, descriptor coefficients are truncated or rounded 

off. These sources of reproducibility errors can of course 
be easily monitored by periodically re-running models 
on the original data sets and descriptors. This naturally 
brings us to the intrinsic accuracy of the model itself, 
which is related to how well our theoretical description of 
the phenomenon (i.e. being models) can actually describe 
the physical event taking place. In silico models cannot 
describe an experimental event with the same level of 
accuracy than performing the experiment a second time. 
Thus, small differences in the reproducibility of a given 
model may not make a significant difference to the util-
ity of the method in the real world. Furthermore, models 
that have what might be considered to be a finite predic-
tivity ( r2 of  0.5) can indeed be useful in drug discovery. 
In these cases, updates to particular descriptors engines 
at the back-end of a prediction tool will in all probabil-
ity have negligible impact on the overall model statistics 
if generated on a large, diverse data set. Thus, while the 
absolute predictions for each compounds will change, the 
overall effect on the accuracy of the prediction is likely 
to be negligible. A key issue is therefore to build an intel-
ligent system or workflow such that rounding errors or 
other subtle differences can be differentiated from the 
more serious algorithmic or implementation errors.

Chemical and biological data repositories
The implementation of open data initiatives by many 
fields including bioinformatics and proteomics has dra-
matically risen in the past few years with the Human 
Genome Project being paramount in guiding the scien-
tific community towards open science  [106]. However, 
researchers in the pharmaceutical industries lack the 
appropriate informatics knowledge that would allow 
them to completely make use of such platforms. Hence, 
the availability of cheminformatic tools that are easy to 
use can help reduce time and cost in this complex drug 
discovery field [107]. Similarly, various connections 
between protein and ligands can also be established using 
these widely available resources [108]. The presence of a 
large number of experimental and biological databases 
containing relevant screened compounds is easily acces-
sible via a public domain. Among them, the most widely 
used databases are ChEMBL [109] and PubChem [110]. 
The ChEMBL bioactivity database is a large open-access 
drug discovery database comprised of more than 2.2 
million freely available compounds obtained from over 
1.8 million assays having around 15 million activity val-
ues [109]. In a similar fashion, PubChem was established 
by the National Center for Biotechnology Information 
(NCBI) as a public repository that gathers information 
on biological activities of small molecules. In addition, 
PubChem currently contains a database of about 96.5 
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million compounds with bioactivities for greater than 
237 million [110].

Furthermore, another publicly accessible database 
known as Binding Database or simply BindingDB [111] 
contains experimental small molecules interaction data 
from patents and scientific articles making up more than 
1.4 million protein-small molecule affinities with over 
7,000 proteins involved with greater than 650,000 small 
molecules as of January 2019  [112]. In addition, Drug-
Central [113] and DrugBank  [114] are comprehensive 
resources focusing on FDA approved drug that com-
bines the chemical, pharmacological and pharmaceuti-
cal information of the drug with the sequence, structure 
and pathway information of its target. This latest update 
of DrugBank  [115], shows a tremendous increase in 
drug-drug interaction data for ADMET properties as 
well as additional new features such as pharmaco-omics 
data with special focus on pre-clinical and clinical trials. 
These additions and enhancements are intended to facili-
tate research in pharmacogenomics, pharmacoproteom-
ics, pharmacotranscriptomics, pharmacometabolomics, 
pharmacokinetics, pharmacodynamics, pharmaceutics 
and drug design and discovery. In addition, databases 
such as CARLSBAD [116], BRENDA [117] and ExCAPE-
DB  [118] contain uniformly presented data integrated 
and curated from various repositories .

Ligand‑based approaches
Ligand-based drug design is based on identifying key 
features that give rise to biological activity and aiming to 
incorporate, improve or identify new chemotypes with 
similar characteristics. Pharmacophore-based mod-
els are based on 2D or 3D methods and assume that all 
molecules that contribute to said pharmacophore bind 
in a similar manner to the prospective target [119–121]. 
Such similarity may be used to identify compounds with 
the same or similar features, or can be employed in con-
junction with statistical methods to give either structure-
activity relationships (SAR) or the more extensive QSAR. 
Such methods are useful to ascertain trends within pri-
mary screening data. The intuition of the medicinal 
chemist is critical at the beginning of a project, however 
the large amount of early screening data generated mean 
that visual analysis of the data is not practical [122]. Thus, 
compounds clustering and SAR analyzes can provide a 
simple, efficient means to explore or generate initial SAR. 
This allows one to identify a series of molecules with the 
greatest potential and develop new molecules with rela-
tively localized structural changes to significantly assess 
the activity landscape.

In the context of chemical risk assessment, toxicologi-
cal profiles of chemicals (cosmetics, industrial chemicals, 
food chemicals, etc.) are often tested in animals prior to 

human consumption or usage. QSAR has been proposed 
as a promising replacement to animal testing [123] or if 
experimental testing is inevitable then QSAR can help 
to (1) supplement experimental data and (2) prioritize 
chemicals for such experiments  [124, 125]. Particularly, 
QSAR can help in regulatory purposes as it can be used 
to generate structural alerts or “expert rules” derived 
from SAR observations that relates a structural template 
or functional group to a particular adverse event (i.e. tox-
icity and undesirable pharmacokinetic properties). As the 
name suggests, the rules can be a result of expert intui-
tion or from statistical analysis of representative data sets. 
Many examples exist, including for DNA reactivity [126], 
toxicity [127, 128], skin sensitivity  [129, 130], pan assay 
interference (PAINs) compounds and general purpose 
filters for undesirable compounds  [131–133]. An alert 
does not mean that a toxic event is to be expected per se, 
rather it acts as a qualitative prediction of increased risk. 
This means that such models can be used for guidance 
purposes only. Indeed, Alves et al. [134] noted the con-
cern that these structural alerts can disproportionally flag 
too many chemicals as toxic, which questions their reli-
ability as qualitative markers. The authors state that the 
simple presence of structural alerts in a chemical, irre-
spective of the derivation method, should be perceived 
only as hypotheses of possible toxicological effect.

QSAR modeling involves generating multivariate 
predictive models using chemically relevant descrip-
tors (e.g. structural counts, fingerprints, 2D and 3D 
molecular properties, etc.) along with biological activi-
ties  [135–140]. There are thousands of potential molec-
ular descriptors of numerous types that can be used to 
explore the complex relationship between structure and 
response. In such cases, care needs to be taken as the 
probability of finding spurious correlations, particularly 
with small data sets, is significant  [141, 142]. Biological 
responses (e.g. inhibitory activity) will typically undergo 
logarithmic transformation or be used to define sub-
classes to facilitate the statistical model building pro-
cess [143]. Model building can be performed using a wide 
variety of methods ranging from simple statistical meth-
ods (e.g. multiple linear regression) to machine learning 
methods (e.g. random forest, artificial neural network, 
support vector machine).

Model performance then needs to be assessed using 
a wide range of statistics, including correlation coeffi-
cients, estimates of prediction error, etc. For classifica-
tion models, false positive and negative rates as well as 
holistic measures such as the Kappa statistic or the Mat-
thew’s correlation coefficient are recommended [144, 
145]. To understand the true predictive capability of the 
model it can be instructive to look at how the errors or 
correlation compare with repeat measurement from the 



Page 11 of 30Schaduangrat et al. J Cheminform            (2020) 12:9 

experimental assay being modelled. QSAR models can-
not be more predictive than the data they are built on. If 
such a situation is encounter, it would suggest the model 
is overfitted and may not extrapolate well to future com-
pounds [143]. In such cases, additionally statistical vali-
dation in the form of leave one, or leave many out cross 
validation, or Y-randomization trials can be useful [142, 
145].

Aside from assessing the performance of constructed 
QSAR models, current efforts are already in place for 
establishing the reliability of QSAR models, for instance, 
by using conformal predictions [146, 147] and applicabil-
ity domain [143], which have been proposed as promis-
ing approaches for tackling this issue. Putting this into 
perspective, the statistical performance as produced by 
conventional metrics such as R2 or RMSE suggests how 
well the model is performing on the prediction task but 
it does not consider whether such predictions are made 
on compounds falling within the boundaries of the appli-
cability domain or the degree of certainty that the model 
has on the predicted bioactivity of compounds. Such 
confidence and the degree at which a compound falls 
within the applicability domain would greatly assist in 
compound prioritization. A further practical look into 
applicability domain will be discussed in the forthcoming 
paragraphs.

QSAR models can only be as good as the data that they 
are built on therefore, it is to be expected that they would 
not be able to predict as good as repeating the experi-
ment a second time. QSAR models are highly useful as 
a first filter however, users and developers face a number 
of issues while generating and using the models in prac-
tice  [148]. The quality of the models can be evaluated 
with statistical parameters, including correlation coeffi-
cient or root mean square error (RMSE). It is expected 
that the RMSE cannot be smaller than the RMS of the 
experimental method, otherwise the model is overfitted 
[149]. Many data sets that require investigation consist 
of diverse compounds sets of finite sizes (i.e. commonly 
100-10000 in size) and are sometimes termed global 
models [150, 151]. This means that any model built could 
easily be overfitted due to the typically small number of 
observations and large number of descriptors and mod-
eling methods. Another issue is that any new compounds 
may not be very similar to those used to build the model 
and may therefore be poorly predicted, which could 
occur even if the model is apparently highly predictive. In 
that case, the distance of the compounds to the training 
set model space can be used to estimate the probability of 
the prediction reliability.

Generally speaking, a global model built on a large 
diverse data set would be expected to generate a bet-
ter prediction on an unknown compounds compare 

to one generated on a small set of compounds. How-
ever, in some cases QSAR models built on small conge-
neric series can be highly useful when restricted to the 
chemotype in question. This is particularly true if these 
related molecules act via a similar mode of action so that 
the activity to be explained is affected by fewer factors. 
These so called local QSAR models are built using only a 
specific class of chemotypes, and have a limited domain 
of applicability [150, 152]. However, they are often more 
predictive for the subset of chemicals that they can be 
applied on specifically because of the fewer confounding 
factors contributing to the activity. Additionally, in terms 
of interpretation, local models can be more useful in a 
practical sense because it is possible to understand what 
the models are telling in order to obtain new molecular 
insights from the model. Therefore, when a novel com-
pounds under investigation have a common structural 
cores, a medicinal chemist could carefully choose chem-
ist friendly descriptors not only to get a robust model but 
also provide useful information on which descriptors that 
modulate biological activity. Local model can provide 
useful information to the medicinal chemist on how to 
improve biological activity by linking the descriptors (e.g. 
lipophilicity, electron donating or withdrawing proper-
ties, hydrogen bonding effects and molecular size).

The domain of applicability of QSAR models can be 
used to give the user a degree of confidence in the predic-
tion as it can be shown that there is often a correlation 
between the query compounds and those in the train-
ing set as calculated using the model descriptors [143, 
152]. It is expected that compounds that lie within this 
reason should be better predicted than those that lie out-
side, assuming of course that the model is not overfitted. 
The compounds from the test set, if reasonably similar to 
those from training set (i.e. due to selection procedure, 
or due to random sampling), then the model should per-
form well. However, if more challenging validation sets 
are chosen, such as unrelated compounds, or compounds 
prepared at a later date which typically show greater 
dissimilarity, the statistics are generally less favoura-
ble [143]. However, if the test chemical is far away from 
the training set a valid prediction cannot be expected. 
Once the model is established, then one can make a pre-
diction and consider its reliability. To inform the quantity 
of the information available to the model, information 
towards a query structure can be obtained by averag-
ing distance (e.g. Tanimoto, Euclidean, etc.) between the 
nearest neighbors. The reliability of the information that 
is in the model for a given prediction is normalized into 
0 to 1 range in which 0 has the nearest distance and 1 
the farthest distance. If the query compounds are in the 
AD of the model and the prediction is in the reliability 
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domain, then the prediction can be concluded as valid 
and reliable [143].

Guidelines on the development of robust QSAR mod-
els based on the Organization of Economic Coopera-
tion and Development (OECD) principles of validation 
have already been published [153]. With recent empha-
sis being placed on the reproducibility of models, Jud-
son et al. [154] proposed the Good Computer Modelling 
Practice (GCMP) guidelines which identifies the best 
practice for conducting and recording modelling proce-
dures. Although, with the availability of ample literature 
on the best practice in QSAR modeling [155], it is mostly 
aimed at those having cheminformatics/mathemati-
cal understanding of the subject. In a recently published 
article, Patel et  al. [156] assessed the reproducibility of 
QSAR models pertaining to ADME predictions by sci-
entists without expertise in QSAR. The authors reviewed 
85 papers spanning 80 models with ADME related end-
points and presented a pragmatic workflow for the 
implementation of QSAR models with greater usability. 
In addition, QSAR models are able to correlate the phys-
icochemical properties of a structure with the biological 
activity [157]. Hence, the QSAR models can be efficiently 
used for the activity prediction of unknown compounds 
and designing new compounds for that particular activ-
ity. However, many of the QSAR models published, are 
not aimed at drug design. In that regard, Kurdekar and 
Jadhav [158] designed an open source Python script 
for QSAR model building and validation using data for 
Matrix Metallo-Protease 13 (MMP13) inhibitors and a 
series of anti-malarial compounds.

Structure‑based approaches
Structure-based computational approaches generally 
require greater input from the model builder, resulting in 
a larger number of approximations being used to generate 
the predictive model. For example, which protein crystal 
structure do we choose for a particular target, how do 
we treat ionizable residues, are all residues flexible, what 
method and parameters will we use to model the results, 
what software program and custom parameters will we 
use etc. This results in a large amount of often subjective 
decision being made. However, while these results may 
change the outcome of the simulations, it is hoped that it 
will not impact on the overall conclusions.

For example, there are numerous protein structures 
that are available from multiple families via the Protein 
Data Bank (PDB) [159] therefore it is possible to either 
obtain high quality structures of the target of interest 
or generate homology models  [160] for use in compu-
tational analysis. One of the most commonly employed 
technique is molecular docking, a technique that samples 
and scores conformations of small molecules bound to a 

target active site [161, 162]. Docking and scoring algo-
rithms are employed to predict protein-bound conforma-
tion, virtual screening of large data sets and sometimes to 
try and estimate molecule potency.

The information gained from docking exercises can be 
invaluable for helping rationalize SAR and help inspire 
further synthetic plans. However, care should be taken 
as to not over interpret such models. A detailed study by 
Warren et  al. [163] shows that although docking could 
successfully predict the protein-bound conformation and 
explore conformational space to generate corrected post 
as well as correctly identify molecule or chemotypes of 
actives from a population of decoy molecules, they are 
less successful in identifying the post closest to the crystal 
conformations using scoring functions and that no single 
docking protein performed well across multiple protein 
targets. The inconsistencies of the docking program to 
reproduce greater than 35% of the binding modes within 
2 Å across all targets highlight the fact that experts in the 
loop, or additional experimental data is often needed to 
correctly predict binding modes.

QSAR can also be applied to 3D models of ligands 
that are (a) superimposed together based on a common 
active conformation or (b) superimposed based on how 
they dock within a given active site. All the complica-
tions that are pertinent to the generation of 2D QSAR 
models also apply to 3D QSAR. However, there are 
additional issues that can arise in 3D QSAR models due 
to the extra assumptions that must be made: (1) recep-
tor binding is related to the biological activity (2) mol-
ecule with common structures generally bind the same 
way, (3) the properties that govern the observed biologi-
cal response are determined by non-bonding forces, (4) 
the lowest energy conformation of compound is its bio-
active conformation and (5) all the ligands in the study 
bind the same target site and have a comparable binding 
mode or similar mode of action [164, 165]. To perform 
a 3D QSAR, the chemical structures are optimized using 
molecular mechanics, or to a lesser extent semi-empirical 
and quantum mechanics to obtain a lowest conformer. 
These can then be overlaid on a common ligand scaffold 
and these coordinates are used to determine descriptors 
(e.g. CoMFA and CoMSIA). Chemical structures can also 
be superimposed using docking to a target binding site, 
using field based or pharmacophore-based methods. The 
whole process is predicated on the fact that modelled 3D 
structure corresponds to the active conformation. A fur-
ther limitation of such models is that, compound hydro-
phobicity is not so well quantified, and many descriptors 
are produced, most of which have low variance [166].

3D models can be further expanded with additional 
approximations. For example, molecular dynamics simu-
lations that are based on empirical MM parameters can 
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be applied to simulate how molecular systems evolve 
over time using Newtonian mechanics. These simula-
tions are based on rather simple molecular methods (e.g. 
AMBER, CHARMM parameters, etc.) which is necessary 
to obtain sufficient conformational sampling. Neverthe-
less, computational sampling could be sacrificed if the 
user wanted to use more accurate quantum mechanical 
methods, starting with semi empirical treatments such as 
AM1 or PM3, to ab initio methods such as Hartree Fock 
(HF) to methods that take into account electronic meth-
ods such as DFT (e.g. B3LYP and M0X series)  [167]. A 
further advantage of the latter methods is that they do 
not require bespoke generation of parameters for each 
molecule. However, the massive overhead in computa-
tion means they are rarely used for protein simulations. 
Alternative methods to get around the flaws of both 
methods include hybrid quantum mechanical/molecu-
lar mechanical methods. In these methods the active site 
region that contains the substrate/inhibitor and the main 
residues it interacts with are defined using QM, and the 
remaining protein MM. This method makes it possible to 
perform more accurate evaluation of the energetics while 
also providing a means to perform molecular dynamics 
over acceptable time frames  [168–172]. Despite these 
advances, a suitable balance between methods of suffi-
cient accuracy, and sampling of sufficient time eludes us.

Systems‑based approaches
Systems-based drug discovery aims takes a holistic view 
of the genome, proteome and their specific interactions 
amongst one another and how chemicals may postively 
or negatively modulate their action [173, 174]. Particu-
larly, this encompasses the understanding of the under-
pinning details of biochemical pathways in which the 
interplay of gene, proteins, carbohydrates, lipids and 
chemicals sustain the molecular logic of life. As there are 
more than 30,000 genes that may subsequently translate 
to proteins via complex gene expression feedback loop, 
therefore such vast amounts of data requires the utiliza-
tion of computers for extracting key insights. Systems 
biology take a broader overlook of biological systems as 
oppose to the convention reductionist approach. The 
field pieces together disparate information from vari-
ous omics disciplines to produce a unified analysis of the 
data.

In the context of drug discovery, systems pharmacol-
ogy (i.e. also termed “network pharmacology”) makes 
it possible to perform drug repositioning  [175, 176] in 
which known FDA-approved drugs that were originally 
designed to treat disease A (i.e. original indication) can 
be repurposed or repositioned to treat other diseases 
(i.e. new indication). This is made possible owing to the 
concept of polypharmacology that essentially relies on 

the concept of molecular similarity whereby similar tar-
get proteins are assumed to also share similar binding 
characteristics to compounds  [177]. For instance, the 
nelfinavir (i.e. an HIV-1 protease inhibitor) has been 
demonstrated to exert promising anti-cancer activities 
against a wide range of cancer types  [178]. Aside from 
network pharmacology proteochemometric modeling is 
systems-based approach that has also been demonstrated 
to facilitate drug repositioning [179, 180].

Hereafter, we examine the ongoing work in the effort to 
establish reproducibility of systems biology models. The 
COmputational Modeling in BIology NEtwork (COM-
BINE) is an initiative that has been set up in 2010 to coor-
dinate the development of various community standards 
and formats pertaining to the development of systems 
biology models. Two independent articles published in 
the IEEE Transactions on Biomedical Engineering exam-
ines this topic in which Waltemath and Wolkenhauer 
[181] focused on how initiatives, standards and software 
tools supports the reproducibility of simulation stud-
ies while Medley et  al.  [182] formulated a set of guide-
lines for building reproducible systems biology models. 
Moreover, Waltemath et al. [183] outlined the necessary 
steps needed to facilitate the production of reproducible 
models in the systems biology setting by exemplifying a 
number of computational models pertaining to the cell 
cycle as obtained from the BioModels database  [184]. 
The authors summarized that in order for models to be 
reproducible, they should be (1) encoded in standard for-
mats (e.g. XML, SBML, CellML, etc.), (2) the meta-infor-
mation should be provided to support the understanding 
of the model’s intention, (3) associated simulation experi-
ments should be encoded in standard formats and (4) 
all information must be made available through open 
repositories.

Kirouac et  al. [185] investigated the reproducibility of 
quantitative systems pharmacology (QSP) by analyzing 
18 QSP models published in the CPT: Pharmacometrics 
and Systems Pharmacology journal. Owing to the hetero-
geneity of the platform used in the 18 models, 12 were 
selected for further analysis (i.e. coded in R, PK-Sim/
MoBi, and MATLAB) and only 4 were found to be read-
ily executable from a single run script. From there, the 
authors initiated points for discussion on how to estab-
lish best practices for QSP model reproducibility. Nota-
ble points raised includes: (1) suggesting the provision of 
a single run script to allow interested users to easily per-
form the simulation, (2) journals should provide recom-
mendations on the sharing of code and data, (3) provide 
sufficient details on the setup of the simulation model, 
(4) provide models in open source, standardized format, 
(5) provide details on the computation environment (e.g. 
software version, parameter details, etc.).
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Watanabe et  al.  [186] discussed the challenges of dis-
ease model reproducibility that had predominantly 
relied on periodically evolving loose guidelines as 
opposed to well-defined machine-readable standards. 
Thus, the authors investigated the utility of Systems 
Biology Markup Language (SBML) [187] in the devel-
opment of disease models as compared to other asso-
ciated languages including Pharmacometric Markup 
Langugae (PharmML)[188] and MIcro Simulation Tool 
(MIST) [189]. Results indicated the robustness of SBML 
for model reproducibility and as the authors pointed out, 
there exists substantial adoption of SBML where most 
are being deposited to the BioModels repository [184].

In addition to aforementioned markup languages for 
facilitating the exchange of models, there also exists 
other languages as well such as CellML[190] , Simula-
tion Experiment Description Markup Language (SED-
ML) and Systems Biology Graphical Notation (SBGN). 
In the presence of these various markup languages, the 
research group of Sauro  [191, 192] proposed the Tellu-
rium platform as an integrated environment (i.e. mod-
els, Python code and documentation; similar to a Jupyter 
notebook) that is designed for model building, analysis, 
simulation and reproducibility in systems biology while 
facilitating the use of multiple, heterogeneous libraries, 
plugins as well as specialized modules/methods. Simi-
larly, BioUML[193] is a web-based, integrated platform 
that facilitates the analysis of omics data in the context 
of systems biology. Furthermore, the extensive collec-
tion of the plug-in architecture (i.e. comprising more 
than 300 data analytic methodologies coupled with its 
ability to integrate with the Galaxy and R/Bioconductor 
platforms) positions BioUML as a prominent platform 
for building systems biology models. Moreover, a work-
flow engine integrated into the BioUML helps to support 
the concept of reproducible research as new input data 
can be plugged into the already existing model pipeline. 
Additionally, Drawert et al. [194] developed MOLNs as a 
cloud appliance that entails setting up, starting and man-
aging a virtual platform for scalable, distributed compu-
tational experiments using (spatial) stochastic simulation 
software (e.g. PyURDME).

Computational issues on model development 
and deployment
There are two main issues facing the computational scien-
tist or model developer in drug development: computa-
tional processability and scalability. Irregardless of where 
computation is performed (i.e. on a laptop, a server, a 
data center or a cloud infrastructure) in order to achieve 
the reproducibility in sufficient details, it is crucial that 
tools for structuring and managing these processes are 

implemented and exploited as drug research pertains to 
many activities involving various data types of different 
sizes and formats. In a typical computational drug discov-
ery project, it becomes very difficult to keep track of tools 
and parameters that were used, the different versions of 
data as well as the manual gluing of results together into 
the final tables and figures that are presented in a scien-
tific manuscript. Proper data management becomes a key 
necessity. Challenges of data management in the big data 
era have previously been discussed [195] and practical 
suggestions on how to structure data in computational 
analysis projects have also been proposed  [196]. Fur-
thermore, as soon as a data set increases in size above a 
few tens or hundreds of gigabytes, or when the amount 
of data needed to be kept in RAM becomes larger than 
a few gigabytes, it often becomes infeasible to perform 
computations on the user’s own local laptop, and there-
fore scaling up the computation on a larger computing 
infrastructure becomes an inevitable need. In this sec-
tion, we discuss the most common approaches for resolv-
ing these challenges.

Scientific workflow management systems
For reproducible research, an important capability is to 
be able to re-run and validate a complete analysis pipe-
line in an automated fashion. While this can, to some 
extent, be done by scripting, scripted pipelines can eas-
ily become brittle and complex to manage and modify 
due to their low-level nature. As the user is forced to take 
care of all the low-level details of data management and 
program execution, even simple changes in the work-
flow can require a substantial mental effort in order not 
to introduce subtle errors. Also, tracking intermediate 
output from an intermittent process of the pipeline can 
be difficult in order to determine which process causes 
the failure. Optimizing which step to be rerun instead of 
restarting the whole pipeline is an important question in 
the context of large-scale analyses. These problems are 
at the core of what scientific workflow systems aim to 
solve, and thereby contributing to making computation 
research more reproducible.

Scientific Workflow Management Systems (WMS) 
provide a number of added benefits to computational 
pipelines that help in creating reproducible, transparent 
computations. Firstly they allow the user to construct 
the pipeline using a more high-level, abstract descrip-
tion than plain scripts, hiding away low level technical 
details of exactly how data is managed and programs 
are executed. The user typically only needs to specify 
how the computational steps depend on each other, and 
which parameters to feed them with. The WMS takes 
care of low-level details such as scheduling the concrete 
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invocations of the workflow steps in the right order with 
the right parameters, passing on data between processing 
steps, separating unfinished and finished files (in what 
is often called atomic writes), logging, producing audit 
reports and more.

The more high level description of workflows in WMS, 
primarily consisting of task and data dependencies, 
makes it easier to follow the logic of the core computa-
tion making up the pipeline. It also makes the workflows 
easier to change as one typically needs to change the 
workflow code in far fewer places than in scripts, because 
of the lower amount of details specified in the high-level 
description.

In summary, WMS benefit reproducible computa-
tions by (1) making automation of multi-step computa-
tions easier to create and more robust and easy to change 
(2) providing more transparency to what the pipeline 
does through its more high-level workflow description 
and better reporting and visualization facilities, and (3) 
by providing a more reliable mechanism for separating 
unfinished and completed outputs from the workflow.

The most common WMS used in drug discovery over 
the last few decades have been the proprietary Pipeline 
Pilot software [197] and the open source KNIME work-
bench [198], which also has proprietary extensions. Over 
the years, the relative use of KNIME appears to have 
increased. This is illustrated by the distribution of arti-
cles available on PubMed which mention “Pipeline Pilot” 
or “KNIME” in their title or abstract (Fig. 3). It should be 
noted that a PubMed search might not provide the full 
picture of the usage of these software inside for example 

pharmaceutical industry, since PubMed only indexes 
public, peer-reviewed articles, the production of which is 
not the primary concern for most pharmaceutical com-
panies. A part of the increased number of papers men-
tioning KNIME might also be due to the generic nature 
of the platform, as KNIME is not focusing only on drug 
discovery, but also has support for more general data 
analysis tools, as well as tools specific to other fields even 
outside of the biomedical domain.

Pipeline Pilot has been used in several studies, includ-
ing to design screening libraries  [197], for high-content 
screening [198], and for compound design [199]. KNIME 
has been used, for example, for virtual screening [200], 
target identification [201]; more in-depth coverage of 
applications are provided elsewhere [202].

In addition to Pipeline Pilot and KNIME, there has 
been some use of the Taverna and Galaxy platforms too. 
Taverna, which has been widely used in the wider bioin-
formatics field in the past, has functionality relevant to 
drug discovery through the CDK-Taverna project  [203], 
which integrates the JVM-based Chemistry Development 
Kit [204, 205]. The immensely popular web based Galaxy 
platform [49–51] has the ChemicalToolBoX, which is a 
suite of more than 30 tools for chemistry and cheminfor-
matics integrated [206].

A recent trend among many more recent workflow 
tools popular in bioinformatics, is that the main mode 
of interaction with the user is increasingly often purely 
text-based. Prominent examples of this trends include 
tools like Nextflow [207], Snakemake [208], Ruffus [209], 
BPipe  [210], Cuneiform [211] and Luigi [212]. Discus-
sions with users of workflow tools reveals that this focus 
has a lot to do with the easier integration of workflows 
into HPC and cloud computing environments as well 
as easier version control when all workflows are stored 
as plain text files rather than as configurations in a GUI 
software. Keeping track of all changes and versions to 
workflows in version control is identified as one key com-
ponent in achieving reproducibility in computational 
biology [213, 214].

Among these newer text-based tools, Luigi has found 
some use in drug discovery. The fact that Luigi is imple-
mented as a Python library, enables it to seamlessly inte-
grate with python based client programming libraries 
such as the ChEMBL client library [215]. By not requir-
ing a GUI, Luigi is also easier to integrate and run in an 
HPC environment, interacting with resource managers 
such as SLURM. This was recently done in a study on 
the effects on dataset and model sizes on the predictive 
performance of toxicity models [216]. SciLuigi  [217] is 
a wrapper library around Luigi, designed specifically to 
make workflow motifs common in drug discovery easier 
to model with Luigi. An example of of such motifs are 
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machine learning pipelines containing cross-validation 
of trained models, nested with parameter sweeps. Sci-
Luigi also includes built-in support for the SLURM HPC 
resource manager [218].

Another trend in the wider field of computational biol-
ogy is increasing adoption of support for tool-agnostic, 
interoperable workflow description formats such as 
the Common Workflow Language [219] or Workflow 
Description Language [220]. Such tool-agnostic for-
mats promise to make it easier to share workflows with 
other users, who might prefer or even be restricted to, 
other tools and infrastructures, and can thereby make 
reproduction of computational studies easier. Use of 
such interoperable formats has yet to see widespread use 
within drug discovery, but presents a promising direc-
tion for increasing the reproducibility of computational 
studies in the field. By being a textual representation of 
workflows, they may also provide an excellent way for 
GUI-centric workflow systems to provide a representa-
tion of its workflows that fits in easily with popular ver-
sion control systems like Git.

Large‑scale integrative computational infrastructure
High performance computing (HPC) clusters
The traditional way of scaling up scientific computing 
workloads has been by using high performance clusters. 
These have in the last couple of decades typically con-
sisted of so called Beowulf clusters, meaning clusters 
composed of relatively “normal” computers, running a 
common operating system such as Linux, and connected 
through a high performance network. These compute 
nodes typically mainly only differ from normal comput-
ers by possibly having more compute cores and/or ran-
dom access memory (RAM). Workloads on HPC clusters 
can either run within one node, much like any other pro-
gram, or use a technology such as Message Passing Inter-
face (MPI) to run a computation by running the program 
on multiple nodes, where the multiple instances commu-
nicate with each other via MPI. The latter is a common 
scenario in physics, but is not widespread for computa-
tions in the biomedical field.

Despite of the recent trend towards cloud computing 
environments, HPC still remains a common option espe-
cially for academic computing because of the relatively 
low cost per CPU hour. On the other hand, HPC envi-
ronments typically do not allow the same level of flex-
ibility and user control as cloud environments, because 
of tighter security requirements, and various policies 
induced by local system administrators. For example, it is 
typically out of question to get root privileges on a HPC 
compute node, or to install your own virtual machine, 
where you could get root privileges. This means users 
sometimes need to compile and/or install the required 

software by hand, if the right version of the software they 
need is not already available on the cluster. There are 
some recent trends to meet the need for software pack-
aged into container, most notably through the Singular-
ity project, which allows users to run a type of container 
without root privileges.

Cloud computing and virtualization
Cloud computing offers computational infrastructure, 
platforms, and services on-demand, and it will have a 
profound impact on how computational drug discovery is 
carried out [221, 222]. For pharmaceutical companies, on 
short term perhaps the highest impact is the on-demand 
availability of computational infrastructure, relieving 
them of the burden to manage an  in-house computing 
center. But in the longer run, platforms-as-a-service sup-
porting drug discovery has the potential to dramatically 
change the way computer-aided drug discovery is carried 
out, for example, accelerate processes [223] and scaling 
up analyses [224], but also at the same time drastically 
improve reproducibility.

Virtual machines
Some software tools and workflows/pipelines can be 
complex to move between systems, even if they are open 
source and all data is publicly available. For example, 
when installing the same software on different systems, 
there will always be different versions in some depend-
ent packages and different optimization flags for com-
pilations etc. that could affect the execution of software 
and lead to different results in analysis [207]. One way 
of addressing this problem is by using virtual resources. 
A virtual machine (VM) is an emulation of a computer 
system that provides functionality of a physical com-
puter, with a complete operating system that runs within 
a managed “virtual” environment without direct connec-
tion to the underlying “host” computer. Virtual machines 
can be packaged as a virtual machine image (VMI or 
simply “image”) that can be transported between systems 
and launched on demand. In science, researchers can 
take a “snapshot” of their entire working environment 
including software, data, scripts etc that can be shared 
or published, and cited in publications to greatly improve 
reproducibility [225, 226].

VMs have been used in several drug discovery pro-
jects. For example, Jaghoori et  al. [227] described how 
AutoDock Vina can be used for virtual screening using 
a virtual machine. McGuire et al.  [228] developed 3d-e-
Chem-VM, a virtual machine for structural cheminfor-
matics research. Lampa et al.  [217] provides a complete 
analysis using predictive modeling in drug discovery that 
is shared as a virtual machine image. Lilly has developed 
their Open Innovation Drug Discovery platform  [229] 
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where participating investigators get access to tools 
and predictions by Lilly software and data via a virtual 
machine where they can, for example, submit com-
pounds for in silico evaluation. The widely used ChEMBL 
database makes the data and tools available as a virtual 
machine via the myChEMBL package  [230]. Virtual 
machines are also a necessity for Big Data frameworks 
in drug discovery, for example, implementing docking 
on Hadoop [231] and Apache Spark [232]. VMs can also 
be useful for providing student environments for educa-
tional courses, such as is done for the course Pharmaceu-
tical Bioinformatics at Uppsala University  [233]. There 
are several places to deposit virtual machines, for exam-
ple, the BioImg.org website [234] is a catalog dedicated to 
housing virtual machine images pertaining to life science 
research. Further, VMIs can be shared within several 
public cloud providers (see Table 1).

Containers
A drawback of VMs to support computational reproduc-
ibility is that VMIs, with all software and raw data for an 
analysis available, tend to become rather large (i.e. in the 
order of several gigabytes). Software containers, or sim-
ply ‘containers’, are similar to virtual machines that they 
isolate software from its surroundings, but a container is 
smaller and do not contain the entire operating system; in 
fact, several containers can share the same operating sys-
tem kernel making them more lightweight and use much 
less resources than virtual machines (Fig. 4). Containers 
can hence aid reproducible research in a way similar to 
virtual machines, in  that they  produce the same output 
irregardless of the system or environment it is executed 
on  [226, 235, 236]. The most widely used containeriza-
tion technology is Docker  [70], but Singularity  [237] 
and uDocker [238] are compelling alternatives that can 
run without root privileges and hence are more useful in 
shared high-performance computing facilities.

It is quite straightforward to containerize tools, and 
due to the portability it has become popular to ship tools 
for workflow environments such as Pipeline Pilot and 
KNIME  [239]. However, containers in drug discovery is 
a relatively recent technology and not many published 
studies are available. Suhartanto et  al. [240] presents a 
study for shifting from virtual machines to Docker con-
tainers for cloud-based drug discovery projects. The 
pharmaceutical company GSK describes in a presenta-
tion at DockerCon 2017 how they are able to accelerate 

Table 1  List of  the  largest public cloud infrastructure 
service providers

Service providers are ordered according to market share [284]

Service provider URL

Amazon Web Service http://aws.amazo​n.com/

Microsoft’s Azure http://azure​.com/

Google Cloud Platform http://cloud​.googl​e.com/

IBM’s SoftLayer http://www.softl​ayer.com/

Alibaba Cloud https​://www.aliba​baclo​ud.com/

Fig. 4  Schematic comparison of virtual machines and containers. Virtual machines run on a Hypervisor and contains their own Guest Operating 
System. In contrast, Containers provide a layer of isolation that share the Host Operating System kernel and are hence smaller and faster to 
instantiate than virtual machines

http://aws.amazon.com/
http://azure.com/
http://cloud.google.com/
http://www.softlayer.com/
https://www.alibabacloud.com/
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science with Docker [241]. Altae-Tran et al. [242] applies 
Deep neural networks, available as a containerized ver-
sion of their package DeepChem. Further, container 
technology is empowering e-infrastructures relevant for 
drug discovery, such as the OpenRiskNet project [243].

There are several repositories for containers, with 
Docker Hub being perhaps the most widely used. How-
ever, catalog services and standardization initiatives rel-
evant for life science research also exist, with Bioboxes 
[244] and BioContainers  [71] as two prominent exam-
ples. With the growing popularity of containers, it is very 
likely that we will see more virtualized tools, environ-
ments and studies become available using this technol-
ogy in the future which will contribute to reproducible 
research.

Model deployment
Deploying a model in this context refers to installing it 
in a way so that it becomes accessible to oneself or oth-
ers (Fig.  5). A model could, for example, be deployed 
on a laptop, a server on an internal network, on a pri-
vate cloud for a selected group of people, or as a public 

service. Traditional model deployment as a service has 
commonly been done as a Web service available over 
a network, such as Internet. The service can then be 
accessed either via an HTML page that calls an applica-
tion server that delivers results from the model, or via 
a Web API that can be consumed programmatically by 
software applications. There are some limitations of this 
simple model: 

1.	 The service provider needs to maintain the ser-
vice and the computer it runs on. If the service goes 
down, it should be restarted. Security patches must 
be applied. Hardware must be upgraded and replaced 
over time. This places a considerable burden on the 
service provider.

2.	 Whenever an update is made to the service, the ver-
sion and possibly API will have to be changed. In 
order to sustain reproducibility, this soon leads to the 
maintenance of multiple versions on the same ser-
vice.

3.	 If the service is resource-demanding, it can be expen-
sive to offer it as a free service.

Fig. 5  A comparison between monolith services and microservices. In traditional services (left), each service consists of a monolithic 
implementation that encapsulates all necessary components under a single interface. In contrast, a Microservice-based implementation (right) has 
the individual components that make up an exposed service running independently, making it easier to scale parts of the service if needed as well 
as offering the benefit of reusing sub-components in other settings
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These problems have limited the use of models deployed 
as services, apart from in-house services at companies 
with adequate system and service support.

Owing to the inherent complexities involved with set-
ting up and maintaining fault-tolerant and scalable ser-
vices, provisioning model services as virtual machines 
and containers has attracted a lot of interest [245]. Here 
it both becomes easier to publish a model online on, for 
instance, a cloud provider that eliminates the need to 
buy and maintain computational hardware, but also to 
enable users to instantiate the service on their own com-
putational infrastructure. With proper versioning of ser-
vices available (e.g. Docker containers) the end users can 
download and instantiate explicit versions of the model 
and ensure a reproducible component of an analysis. 
The problem becomes more how input and output data 
is structured, and there is a need for the community to 
develop and agree upon such standards for data, meta-
data including ontologies and vocabularies, and dis-
coverability in order to promote interoperability among 
models deployed as services.

Use case scenarios for streamlining 
the computational drug discovery protocol
Workflows for computational drug discovery
In a real-life scenario, a typical research project in com-
putational drug discovery involves the use of several soft-
ware, programs and tools that spans from reading input 
files, data pre-processing, one or more rounds of compu-
tation and post-analyses. This would likely involve pre-
processing and connecting the outputs of one software or 
tool as input to another software or tool. Such task may 
be a troublesome endeavor that may require manual pre-
processing of the output and input files. Such issue may 
potentially be solved if software or tool developers also 
consider the practical use case scenario pertaining to the 
interoperability of input/output files for various software 
and tools.

In cheminformatics research, there are efforts to 
establish standardized formats and repositories for 
QSAR models and data. In order to foster reproducible 
QSAR, exchange formats for data, models, and param-
eters are needed. QSAR-ML is an XML-based exchange 
format aimed at promoting interoperable and repro-
ducible QSAR data sets, building on an open and exten-
sible descriptor ontology [246]. The QSAR DataBank 
(QsarDB)  [247, 248] is a repository that aims towards 
making QSAR modelling transparent, reproducible 
and accessible via a custom file format and services.The 
QSAR Model Reporting Format (QMRF) is a harmonised 
template for summarising and reporting key information 
on QSAR models, including the results of any valida-
tion studies. The information is structured according to 

the OECD validation principles and is used by the JRC 
QSAR Model Database  [249]. QMRF version 3.0.0 has 
been updated within the context of the eNanoMapper 
project [250].

There are also additional general exchange formats for 
machine learning that are relevant for predictive models 
in cheminformatics. Predictive Model Markup Language 
(PMML) [251] is an XML-based predictive model inter-
change format that also includes data transformations 
(pre- and post-processing). PMML is sustained by the 
Data Mining Group  [252]. The latest version of QMRF 
has basic support for PMML. The KNIME workflow soft-
ware also has support for PMML  [253] and the QSAR 
DataBank (QsarDB) [247, 248] also supports the export-
ing of models in the PMML data format. A more recent 
format is the Open Neural Network Exchange (ONNX) 
that provides an open source format for AI models 
(i.e. both deep learning and traditional machine learn-
ing) [254]. So far there is no reported usage within chem-
informatics but the increasing interest in deep learning 
makes this a relevant candidate for future exchange of 
models.

In regards to QSAR workflows, there have been con-
siderable efforts directed at this important endeavor 
that typically entails the utilization of several programs 
and tools and a series of intricate data pre-processing, 
model building and analyses (Table  2). Stålring et  al. 
[255] presented an open source machine learning appli-
cation called AZOrange that allows QSAR model build-
ing in a graphical programming environment. Dixon 
et  al.  [256] proposed the AutoQSAR as an automated 
machine learning tool for QSAR modeling using best 
practice guidelines that was validated on six biological 
end-points. Nantasenamat et al. [257] reported the devel-
opment of an automated data mining software for QSAR 
modeling called AutoWeka that is based on the machine 
learning software Weka [258]. Kausar and Falcao  [259] 
presents an automated framework based on KNIME for 
QSAR modeling entailing data pre-processing, model 
building and validation. Dong et al. [260] introduced an 
online platform for QSAR modeling known as ChemSAR 
that is capable of handling chemical structures, com-
puting molecular descriptors, model building as well as 
producing result plots. Tsiliki et al. [261] proposed an R 
package known as RRegrs for building multiple regres-
sion models using a pre-configured and customizable 
workflow. Murrell et  al. [262] introduced an R package 
known as the Chemically Aware Model Builder (camb) 
that continues where the general-purpose R package 
RRegrs left off which is the capacity to handle chemi-
cal structures (i.e. desalting and tautomerizing chemical 
structures as well as computing molecular descriptors). 
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Shamsara [263] presents yet another R package for QSAR 
modeling called Ezqsar.

Additionally, easy to follow/share pipelines for drug 
discovery is largely facilitated by the open source nature 
of the above mentioned cheminformatics and struc-
tural biology workflows. Recently, one of us published a 
book chapter on the construction of reproducible QSAR 
models [264] in which key factors influencing the repro-
ducibility of QSAR models (i.e. data set, chemical repre-
sentation, descriptors used, model’s parameters/details, 
predicted endpoint values and data splits) and guidelines 
on using Jupyter notebook for building reproducible 
QSAR models are provided. As such, Jupyter notebook is 
a popular platform in which these workflows are coded, 
owing to its intuitive blend of code and documentation. 
Particularly, the ten simple rules for best practice in doc-
umenting cheminformatics research using the Jupyter 

notebook is a useful and timely guideline  [265]. These 
documentations can also be found on GitHub, where a 
number of researchers share the code to their project’s 
workflow. A selected group of such researchers and the 
specific area of computational drug discovery research 
(e.g. ligand-, structure- and/or systems-based) are sum-
marized in Table 3. From this table, we can see that Greg 
Landrum  [266] has shared Jupyter notebooks pertain-
ing to the use of the RDKit module [267] in the context 
of ligand-based drug discovery on his personal GitHub 
as well as contributing to the RDKit GitHub  [268]). In 
addition, the OpenEye Python Cookbook  [269] is a col-
lection of practical solutions to ligand- and structure-
based drug discovery research (i.e. combinatorial library 
generation, substructure search as well as ligand and 
protein-ligand structure visualization). Furthermore, 
myChEMBL [230] is an open source virtual machine that 

Table 2  List of software and packages that implements an automated QSAR modeling workflow

Software/tool Description URL Refs.

Standalone and online applications

 AZOrange Graphical programming environment based on the Python package 
“Orange” for performing QSAR modeling workflow

https​://githu​b.com/AZcom​pTox/AZOra​nge/  [255]

 AutoQSAR Automated machine learning tool for QSAR modeling using best prac-
tice guidelines

https​://www.schro​dinge​r.com/autoq​sar/  [256]

 AutoWeka Automated data mining software for QSAR modeling based on the 
machine learning software Weka

https​://www.mt.mahid​ol.ac.th/autow​eka/  [257]

 ChemSAR Online platform for QSAR modeling that is capable of handling chemical 
structures, computing molecular descriptors, model building as well as 
producing result plots

http://chems​ar.scbdd​.com/  [260]

Tools implemented in R language

 camb R package that is capable of handling chemical structures, compute 
descriptors and build QSAR models

https​://githu​b.com/cambD​I/camb/  [262]

 Ezqsar R package for building QSAR models https​://githu​b.com/enano​mappe​r/RRegr​s/  [263]

 RRegrs R package for building multiple regression models using pre-configured 
and customizable workflow

https​://githu​b.com/enano​mappe​r/RRegr​s/  [261]

Table 3  List of selected GitHub URLs of researchers working in the domain of computational drug discovery

Researcher’s name GitHub URL Ligand-based Structure-based Systems-based

Andrea Volkamer https​://githu​b.com/volka​merla​b/ ✔ ✔
Chanin Nantasenamat https​://githu​b.com/chani​nlab/ ✔ ✔

https​://githu​b.com/chani​nn/ ✔
Egon Willighagen https​://githu​b.com/egonw​/ ✔
George Papadatos https​://githu​b.com/madgp​ap/ ✔
Greg Landrum https​://githu​b.com/gregl​andru​m/ ✔
Jan H. Jansen https​://githu​b.com/jense​ngrou​p/ ✔ ✔
John Chodera https​://githu​b.com/chode​ralab​/ ✔ ✔
Ola Spjuth https​://githu​b.com/olas/ ✔
Rajarshi Guha https​://githu​b.com/rajar​shi/ ✔
Samo Turk https​://githu​b.com/samot​urk/ ✔

https://github.com/AZcompTox/AZOrange/
https://www.schrodinger.com/autoqsar/
https://www.mt.mahidol.ac.th/autoweka/
http://chemsar.scbdd.com/
https://github.com/cambDI/camb/
https://github.com/enanomapper/RRegrs/
https://github.com/enanomapper/RRegrs/
https://github.com/volkamerlab/
https://github.com/chaninlab/
https://github.com/chaninn/
https://github.com/egonw/
https://github.com/madgpap/
https://github.com/greglandrum/
https://github.com/jensengroup/
https://github.com/choderalab/
https://github.com/olas/
https://github.com/rajarshi/
https://github.com/samoturk/
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combines bioactivity data from ChEMBL with the latest 
RDKit  [267] cheminformatics libraries to sustain a self-
contained and user-friendly interface. Putting a new twist 
to conventional Jupyter notebook, Squonk [270] is a web-
based workflow tool based on Jupyter notebook for com-
putational chemistry and cheminformatics for processes 
encompassing ligand- (i.e. combinatorial library genera-
tion, 3D conformer generation, prediction of metabolism 
and toxicology, molecular property prediction, data visu-
alization and analysis as well as clustering and diversity 
analysis) and structure-based virtual screening (i.e. scor-
ing active site conformation of compounds).

Aside from the research aspect, educational code-
based tutorials on computational drug discovery has 
been initiated using the Java-based Chemistry Devel-
opment Kit (CDK) [204, 205, 271] as implemented by 
the Teach-Discover-Treat (TDT) initiative [272]. This 
resulted in the development of Python-based tutori-
als pertaining to the virtual screening workflow to iden-
tify malarial drugs  [273, 274]. Furthermore, the recently 
launched TeachOpenCADD platform [275] complements 
the already available resources by providing students and 
researchers who are new to computational drug discov-
ery and/or programming with step-by-step talktorials 
that cover both ligand- and structure-based approaches 
using Python-based open source packages in interactive 
Jupyter notebooks [276].

Similarly, a software platform in structural bioinformat-
ics known as Biskit  [277] links several common tasks in 
molecular simulation (i.e. each task is a modular object) 

into a complex workflow that allows streamlined execu-
tion of these tasks in a concerted manner. Particularly, 
researchers can pre-process and analyze macromolecular 
structures, protein complexes and molecular dynamics 
trajectories via automated workflow making use of estab-
lished programs like Xplor, Amber, Hex, DSSP, Fold-X, 
T-Coffee, TMAlign and Modeller.

In summary, the use of these computational workflows 
(i.e. that have been tailored to rigorously handle the spe-
cific task of interest such as building QSAR models, pre-
processing protein structures for molecular simulations, 
etc.) further helps to ensure the computational reproduc-
ibility of the procedures as they have been pre-configured 
to do so.

Web servers for computational drug discovery
In recent years, the advent of web technologies and the 
convenience with which users can make use of the func-
tionalities of web-based applications has led to the devel-
opment of a wide range of web tools and applications in 
the realm of bioinformatics and cheminformatics for aid-
ing drug discovery efforts (Table 4). The obvious advan-
tage of these web applications is that there is no hassle 
for installing and maintaining their own computational 
infrastructure for performing such tasks. The extent of 
these tools can fall into any one or more of the following 
tasks: data curation, pre-processing, prediction and anal-
ysis. Moreover, another advantage borne from this is the 
fact that such web applications support reproducibility 
in that the underlying protocol being performed by the 

Table 4  List of  selected web applications for  handling various bioinformatic and  cheminformatic tasks belonging 
to either ligand-based or structure-based drug design approach

Web servers Description URL Refs.

Ligand-based drug design

 BioTriangle Compute descriptors for compounds, protein, DNA and their 
interaction cross-terms

http://biotr​iangl​e.scbdd​.com/  [285]

 ChemDes Computes 3679 molecular descriptors and 59 fingerprint types 
for compounds

http://www.scbdd​.com/chemd​es/  [286]

 ChemBench Enables QSAR model building via pre-defined workflow http://chemb​ench.mml.unc.edu/  [287]

 OCHEM Online platform providing storage for QSAR data and workflow 
for model building

http://www.ochem​.eu/  [288]

 PUMA Performs analysis and visualization of chemical diversity https​://www.difac​quim.com/d-tools​/  [289]

Structure-based drug design

 HADDOCK Performs information-driven docking of biomolecular com-
plexes (e.g. DNA, proteins, peptides, etc.)

http://haddo​ck.scien​ce.uu.nl/servi​ces/HADDO​CK2.2/  [290]

 FlexServ Performs coarse-grained determination of protein dynamics http://mmb.pcb.ub.es/FlexS​erv/  [291]

 MDWeb Provides standard protocol for preparing structures, run stand-
ard molecular dynamics simulations and analyze trajectories

http://mmb.irbba​rcelo​na.org/MDWeb​/  [292]

 PoseView Displays simple molecular interaction diagram of protein-
ligand complexes

http://www.zbh.uni-hambu​rg.de/posev​iew  [293]

 SwissModel Predicts protein structures via template-based homology https​://swiss​model​.expas​y.org/  [294]

http://biotriangle.scbdd.com/
http://www.scbdd.com/chemdes/
http://chembench.mml.unc.edu/
http://www.ochem.eu/
https://www.difacquim.com/d-tools/
http://haddock.science.uu.nl/services/HADDOCK2.2/
http://mmb.pcb.ub.es/FlexServ/
http://mmb.irbbarcelona.org/MDWeb/
http://www.zbh.uni-hamburg.de/poseview
https://swissmodel.expasy.org/


Page 22 of 30Schaduangrat et al. J Cheminform            (2020) 12:9 

tool is iteratively executed in the same manner regardless 
of the number of times it is initiated. In efforts to facili-
tate easier dissemination of bioinformatic applications as 
web server, Daniluk et al.  [278] introduced the WeBIAS 
platform, which is a self-contained solution that helps to 
make command-line programs accessible via web forms. 
In spite of its advantages and potential utility for the sci-
entific community, the only downside of web databases 
and applications is the possibility that they may be dis-
continued at any time. In fact, a recent review explores 
this issue in which Ősz et al. [279] investigated 3649 web-
based services published between 1994 and 2017 and 
discovered that one-third of these web-based services 
went out of service. Such discontinued support of web 
tools and resources poses a great impediment to research 
reproducibility.

In recent years, the availability of Shiny  [280] and 
Dash  [281] packages for the R and Python program-
ming environment, respectively, has greatly lowered the 
technical barrier to web development for typical R and 
Python users by facilitating the rapid prototyping of com-
putational workflows as a sharable web-based applica-
tion. Plotly  [282] represents a robust tool for producing 
interactive data visualization that can be collaboratively 
shared to colleagues. Graphs and dashboards can be 
made with no coding and is thus appealing to the non-
technical users while the available Plotly packages for 
various platforms (e.g. R, Python, Javascript and React) is 
equally appealing to technical users as well.

Conclusion
The dawn of the big data era in drug discovery is made 
possible by technological advancements in the vari-
ous omics disciplines. Such big data brings with it great 
opportunities for advancing life sciences while at the 
same time bringing several potential problems pertaining 
to the reliability and reproducibility of generated results. 
In efforts to steer clear of the potential pitfalls that may 
be lurking ahead, it is of great importance to grasp the 
current state-of-the-art of research reproducibility in 
computational drug discovery as to ensure that the 
underlying work is of high quality and that it is capable of 
withstanding reproduction of the described methodology 
by external research group. A wide range of resources 
and tools are available for embarking on the journey 
towards reproducibility in computational drug discovery 
projects, which has been explored in this review article. 
The growing culture of sharing the underlying data and 
codes published in research articles pertaining to com-
putational drug discovery is anticipated to drive the field 
forward as new and useful knowledge base can gradu-
ally be built on top of its predecessors thereby creating 
a snowball effect. In recent years, policies imposed by 

granting agencies and publishers are in favor of data and 
code sharing, which are further facilitated by third-party 
platforms (e.g. Authorea, Code Ocean, Jupyter notebook, 
Manuscripts.io, etc.) that further enhances reproducibil-
ity in which manuscripts and codes that are shared on the 
web are no longer static files waiting to be downloaded 
but are “living” codes and documents that can dynami-
cally be edited and executed in real-time.

In summary, we have attempted to detail the diverse 
range of issues faced by the predictive modelling commu-
nity in its role to develop and deploy efficient and reliable 
computational tools for drug discovery. From examples 
presented herein, it is clear that close interaction between 
frontline drug discovery scientists, the intermediate 
data modellers, and back office computer scientists and 
administrators. The challenge that each of these groups 
faces are quite different in nature and thus there needs 
to be improved understanding of these issues and a com-
mon vocabulary in order to maximize their impact. This 
is no small task, given the breadth of the fields involved. 
We note that it is of critical importance that data model-
lers, tool developers and administrators do not lose sight 
of the fact that tools must be developed for use by front 
line scientists in day-to-day, dynamic environment. This 
dynamic nature may lead to a degree of conflict with best 
practices espoused by the data science community (i.e. 
due to ever changing needs).

With this in mind, it is necessary to understand that 
certain solutions are preferable to the developer commu-
nity and may not be considered optimal to model devel-
opers. For example, custom models using user-derived 
descriptors (i.e. experimental data or non-standard 3D 
computational models) may be desirable, but difficult to 
incorporate rapidly into QSAR models in a short period 
of time. Alternatively, predictive models that deliver 
lower overall predictive performance, but greater inter-
pretability, may be preferred in some cases. The latter 
model types might not appear in automated solutions 
in now common modelling workflows as selection con-
ditions are generally driven by statistical considerations 
rather than needs of the end user.

Open source promotes transparency in implemen-
tations and allows for easy access to validate analysis. 
When working with data and modeling, it is often dif-
ficult to keep track of tools and parameters used in the 
analysis. Workflow systems can aid in this and are gain-
ing momentum in drug discovery. They contribute to 
more robust multi-step computations, transparency, 
provenance and ease of reproducibility. There is also an 
increased push for interoperability and standardization 
of workflow specifications with projects like Common 
Workflow Language.
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With growing data sizes, the use of shared or public 
computing infrastructures (HPC/Cloud) is necessary 
and therefore adds another level of complexity for com-
putational reproducibility. In order for all tools used for 
data analysis to be portable between systems, technolo-
gies such as virtual machines and software containers 
are widely used. When connecting containers and vir-
tual machines with workflow systems, a high level of 
automation can be achieved, and through that improved 
reproducibility. Virtual infrastructure and contain-
ers also facilitate more reliable and replicable services, 
for instance, for deploying models as services over the 
network.

Acknowledgements
This work is supported by the Research Career Development Grant (No. 
RSA6280075) from the Thailand Research Fund. The authors would also like to 
thank Dr. Sirarat Sarntivijai from the European Bioinformatics Institute and Dr. 
Likit Preeyanon from the Department of Community Medical Technology for 
fruitful discussions.

Authors’ contributions
CN conceived the study. OS, MPG and CN conceptualized the study. All 
authors reviewed the literature and drafted the manuscript. SL, SS and CN pre-
pared the figures. CN vetted the manuscript. All authors read and approved 
the final manuscript.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Center of Data Mining and Biomedical Informatics, Faculty of Medical 
Technology, Mahidol University, 10700 Bangkok, Thailand. 2 Department 
of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Swe-
den. 3 Interdisciplinary Graduate Program in Bioscience, Faculty of Science, 
Kasetsart University, 10900 Bangkok, Thailand. 4 Department of Biomedical 
Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology 
Ladkrabang, 10520 Bangkok, Thailand. 

Received: 17 July 2019   Accepted: 2 January 2020

References
	 1.	 Mullard A (2016) Biotech R&D spend jumps by more than 15. Nat Rev 

Drug Discov 15(7):447. https​://doi.org/10.1038/nrd.2016.135
	 2.	 Stratmann HG (2010) Bad medicine: when medical research goes 

wrong. Analog Sci Fict Fact CXXX(9):20–30
	 3.	 DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharma-

ceutical industry: new estimates of R&D costs. J Health Econ 47:20–33. 
https​://doi.org/10.1016/j.jheal​eco.2016.01.012

	 4.	 Biotechnology Innovation Organisation (2016) Clinical Development 
Success Rates 2006–2015

	 5.	 Ogu CC, Maxa JL (2000) Drug interactions due to cytochrome 
p450. Baylor Univ Med Center Proc 13(4):421–423. https​://doi.
org/10.1080/08998​280.2000.11927​719

	 6.	 Fox S, Farr-Jones S, Sopchak L, Boggs A, Nicely HW, Khoury R, Biros M 
(2006) High-throughput screening: update on practices and success. 
J Biomol Screen 11(7):864–869. https​://doi.org/10.1177/10870​57106​
29247​3

	 7.	 Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early 
drug discovery. Br J Pharmacol 162(6):1239–1249. https​://doi.org/10.11
11/j.1476-5381.2010.01127​.x

	 8.	 Ruddigkeit L, van Deursen R, Blum LC, Reymond J-L (2012) Enumera-
tion of 166 billion organic small molecules in the chemical universe 
database gdb-17. J Chem Inform Model 52(11):2864–2875. https​://doi.
org/10.1021/ci300​415d

	 9.	 Villoutreix BO, Renault N, Lagorce D, Sperandio O, Montes M, Miteva MA 
(2007) Free resources to assist structure-based virtual ligand screening 
experiments. Curr Protein Pept Sci 8(4):381–411

	 10.	 Nantasenamat C, Prachayasittikul V (2015) Maximizing computa-
tional tools for successful drug discovery. Expert Opin Drug Discov 
10(4):321–329. https​://doi.org/10.1517/17460​441.2015.10164​97

	 11.	 Feng BY, Simeonov A, Jadhav A, Babaoglu K, Inglese J, Shoichet BK, 
Austin CP (2007) A high-throughput screen for aggregation-based 
inhibition in a large compound library. J Med Chem 50(10):2385–2390. 
https​://doi.org/10.1021/jm061​317y

	 12.	 Soares KM, Blackmon N, Shun TY, Shinde SN, Takyi HK, Wipf P, Lazo 
JS, Johnston PA (2010) Profiling the nih small molecule repository for 
compounds that generate H2O2 by redox cycling in reducing environ-
ments. Assay Drug Dev Technol 8(2):152–174. https​://doi.org/10.1089/
adt.2009.0247

	 13.	 Young D, Martin T, Venkatapathy R, Harten P (2008) Are the chemical 
structures in your QSAR correct? QSAR Combinatorial Sci 27(11–
12):1337–1345. https​://doi.org/10.1002/qsar.20081​0084

	 14.	 Zhao L, Wang W, Sedykh A, Zhu H (2017) Experimental errors in QSAR 
modeling sets: what we can do and what we cannot do. ACS Omega 
2(6):2805–2812. https​://doi.org/10.1021/acsom​ega.7b002​74

	 15.	 Clark RD (2019) A path to next-generation reproducibility in chem-
informatics. J Cheminform 11:62. https​://doi.org/10.1186/s1332​
1-019-0385-0

	 16.	 Walters P (2019) Where’s the code? http://pract​icalc​hemin​forma​tics.
blogs​pot.com/2019/05/where​s-code.html. Accessed 1 Nov 2019

	 17.	 Garabedian TE (1997) Laboratory record keeping. Nat Biotechnol 
15(8):799–800. https​://doi.org/10.1038/nbt08​97-799

	 18.	 Plavén-Sigray P, Matheson GJ, Schiffler BC, Thompson WH (2017) The 
readability of scientific texts is decreasing over time. eLife. https​://doi.
org/10.7554/eLife​.27725​

	 19.	 Dirnagl U, Przesdzing I (2016) A pocket guide to electronic laboratory 
notebooks in the academic life sciences. F1000 Res 5:2 https​://doi.
org/10.12688​/f1000​resea​rch.7628.1

	 20.	 Rubacha M, Rattan AK, Hosselet SC (2011) A review of electronic labora-
tory notebooks available in the market today. J Lab Autom 16(1):90–98. 
https​://doi.org/10.1016/j.jala.2009.01.002

	 21.	 Mascarelli A (2014) Research tools: jump off the page. Nature 
507(7493):523–525. https​://doi.org/10.1038/nj749​3-523a

	 22.	 Schnell S (2015) Ten simple rules for a computational biologist’s 
laboratory notebook. PLoS Comput Biol 11(9):1004385. https​://doi.
org/10.1371/journ​al.pcbi.10043​85

	 23.	 Bradley J-C, Neylon C (2008) Data on display. Interview by Katherine 
Sanderson. Nature 455(7211):273. https​://doi.org/10.1038/45527​3a

	 24.	 Butler D (2005) Electronic notebooks: a new leaf. Nature 436(7047):20–
21. https​://doi.org/10.1038/43602​0a

	 25.	 Project Jupyter (2019) The Jupyter Notebook. http://www.jupyt​er.org/. 
Accessed 9 Jan 2019

	 26.	 Project Jupyter (2019) nbviewer. http://nbvie​wer.jupyt​er.org/. Accessed 
9 Jan 2019

	 27.	 Freeman Lab (2019) Binder. http://mybin​der.org/. Accessed 9 Jan 2019
	 28.	 Google (2019) Colaboratory. https​://colab​.resea​rch.googl​e.com/. 

Accessed 9 Jan 2019
	 29.	 Baker M (2016) 1,500 scientists lift the lid on reproducibility. Nature 

533(7604):452–454. https​://doi.org/10.1038/53345​2a
	 30.	 Head ML, Holman L, Lanfear R, Kahn AT, Jennions MD (2015) The extent 

and consequences of p-hacking in science. PLoS Biol 13(3):1002106. 
https​://doi.org/10.1371/journ​al.pbio.10021​06

	 31.	 Simonsohn U, Nelson LD, Simmons JP (2014) P-curve: a key to the 
file-drawer. J Exp Psychol Gen 143(2):534–547. https​://doi.org/10.1037/
a0033​242

	 32.	 Ioannidis JPA (2008) Effect of formal statistical significance on the cred-
ibility of observational associations. Am J Epidemiol 168(4):374–83384. 
https​://doi.org/10.1093/aje/kwn15​6

https://doi.org/10.1038/nrd.2016.135
https://doi.org/10.1016/j.jhealeco.2016.01.012
https://doi.org/10.1080/08998280.2000.11927719
https://doi.org/10.1080/08998280.2000.11927719
https://doi.org/10.1177/1087057106292473
https://doi.org/10.1177/1087057106292473
https://doi.org/10.1111/j.1476-5381.2010.01127.x
https://doi.org/10.1111/j.1476-5381.2010.01127.x
https://doi.org/10.1021/ci300415d
https://doi.org/10.1021/ci300415d
https://doi.org/10.1517/17460441.2015.1016497
https://doi.org/10.1021/jm061317y
https://doi.org/10.1089/adt.2009.0247
https://doi.org/10.1089/adt.2009.0247
https://doi.org/10.1002/qsar.200810084
https://doi.org/10.1021/acsomega.7b00274
https://doi.org/10.1186/s13321-019-0385-0
https://doi.org/10.1186/s13321-019-0385-0
http://practicalcheminformatics.blogspot.com/2019/05/wheres-code.html
http://practicalcheminformatics.blogspot.com/2019/05/wheres-code.html
https://doi.org/10.1038/nbt0897-799
https://doi.org/10.7554/eLife.27725
https://doi.org/10.7554/eLife.27725
https://doi.org/10.12688/f1000research.7628.1
https://doi.org/10.12688/f1000research.7628.1
https://doi.org/10.1016/j.jala.2009.01.002
https://doi.org/10.1038/nj7493-523a
https://doi.org/10.1371/journal.pcbi.1004385
https://doi.org/10.1371/journal.pcbi.1004385
https://doi.org/10.1038/455273a
https://doi.org/10.1038/436020a
http://www.jupyter.org/
http://nbviewer.jupyter.org/
http://mybinder.org/
https://colab.research.google.com/
https://doi.org/10.1038/533452a
https://doi.org/10.1371/journal.pbio.1002106
https://doi.org/10.1037/a0033242
https://doi.org/10.1037/a0033242
https://doi.org/10.1093/aje/kwn156


Page 24 of 30Schaduangrat et al. J Cheminform            (2020) 12:9 

	 33.	 Risch NJ (2000) Searching for genetic determinants in the new millen-
nium. Nature 405(6788):847–856. https​://doi.org/10.1038/35015​718

	 34.	 Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman 
N (2004) Assessing the probability that a positive report is false: an 
approach for molecular epidemiology studies. J Natl Cancer Inst 
96(6):434–442

	 35.	 Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak 
A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, Bouwman 
J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo 
CT, Finkers R, Gonzalez-Beltran A, Gray AJ, Groth P, Goble C, Grethe JS, 
Heringa J, ’t Hoen PA, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone 
ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik 
R, Sansone SA, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, 
Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, 
Wittenburg P, Wolstencroft K, Zhao J, Mons B (2016) The FAIR Guiding 
Principles for scientific data management and stewardship. Sci Data 
3:160018. https​://doi.org/10.1038/sdata​.2016.18

	 36.	 Guha R, Willighagen E (2017) Helping to improve the practice of 
cheminformatics. J Cheminform 9(1):40. https​://doi.org/10.1186/s1332​
1-017-0217-z

	 37.	 Collin’s English Dictionary (2019) Reproduce. http://www.dicti​onary​
.com/brows​e/repro​ducib​ility​. Accessed 9 Jan 2019

	 38.	 Schwab M, Karrenbach M, Claerbout J (2000) Making scientific compu-
tations reproducible. Comput Sci Eng 2:61–67

	 39.	 Casadevall A, Fang FC (2010) Reproducible science. Infect Immun 
78(12):4972–4975. https​://doi.org/10.1128/IAI.00908​-10

	 40.	 Kerr Bernal S (2006) A massive snowball of fraud and deceit. J Androl 
27(3):313–315. https​://doi.org/10.2164/jandr​ol.06007​

	 41.	 Joint Committee for Guides in Metrology (2008) Evaluation of measure-
ment data — Guide to the expression of uncertainty in measure-
ment. https​://www.bipm.org/utils​/commo​n/docum​ents/jcgm/
JCGM_100_2008_E.pdf. Accessed 1 Nov 2019

	 42.	 Oudeyer P-Y, Merrick K (2016) Computational modelling across disci-
plines. IEEE Cogn Dev Syst Newslett 13(2):1

	 43.	 Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, Ball 
CA, Binz PA, Bogue M, Booth T, Brazma A, Brinkman RR, Michael Clark 
A, Deutsch EW, Fiehn O, Fostel J, Ghazal P, Gibson F, Gray T, Grimes G, 
Hancock JM, Hardy NW, Hermjakob H, Julian RK, Kane M, Kettner C, 
Kinsinger C, Kolker E, Kuiper M, Le Novere N, Leebens-Mack J, Lewis 
SE, Lord P, Mallon AM, Marthandan N, Masuya H, McNally R, Mehrle A, 
Morrison N, Orchard S, Quackenbush J, Reecy JM, Robertson DG, Rocca-
Serra P, Rodriguez H, Rosenfelder H, Santoyo-Lopez J, Scheuermann RH, 
Schober D, Smith B, Snape J, Stoeckert CJ, Tipton K, Sterk P, Untergasser 
A, Vandesompele J, Wiemann S (2008) Promoting coherent minimum 
reporting guidelines for biological and biomedical investigations: the 
MIBBI project. Nat Biotechnol 26(8):889–896. https​://doi.org/10.1038/
nbt.1411

	 44.	 Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, 
Moore S, Orchard S, Sarkans U, von Mering C, Roechert B, Poux S, Jung 
E, Mersch H, Kersey P, Lappe M, Li Y, Zeng R, Rana D, Nikolski M, Husi H, 
Brun C, Shanker K, Grant SG, Sander C, Bork P, Zhu W, Pandey A, Brazma 
A, Jacq B, Vidal M, Sherman D, Legrain P, Cesareni G, Xenarios I, Eisen-
berg D, Steipe B, Hogue C, Apweiler R (2004) The HUPO PSI’s molecular 
interaction format—a community standard for the representation of 
protein interaction data. Nat Biotechnol 22(2):177–183. https​://doi.
org/10.1038/nbt92​6

	 45.	 Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, 
D’Eustachio P, Schaefer C, Luciano J, Schacherer F, Martinez-Flores I, Hu 
Z, Jimenez-Jacinto V, Joshi-Tope G, Kandasamy K, Lopez-Fuentes AC, Mi 
H, Pichler E, Rodchenkov I, Splendiani A, Tkachev S, Zucker J, Gopinath 
G, Rajasimha H, Ramakrishnan R, Shah I, Syed M, Anwar N, Babur O, 
Blinov M, Brauner E, Corwin D, Donaldson S, Gibbons F, Goldberg 
R, Hornbeck P, Luna A, Murray-Rust P, Neumann E, Ruebenacker O, 
Reubenacker O, Samwald M, van Iersel M, Wimalaratne S, Allen K, Braun 
B, Whirl-Carrillo M, Cheung KH, Dahlquist K, Finney A, Gillespie M, Glass 
E, Gong L, Haw R, Honig M, Hubaut O, Kane D, Krupa S, Kutmon M, 
Leonard J, Marks D, Merberg D, Petri V, Pico A, Ravenscroft D, Ren L, 
Shah N, Sunshine M, Tang R, Whaley R, Letovksy S, Buetow KH, Rzhetsky 
A, Schachter V, Sobral BS, Dogrusoz U, McWeeney S, Aladjem M, Birney 
E, Collado-Vides J, Goto S, Hucka M, Le Novere N, Maltsev N, Pandey 
A, Thomas P, Wingender E, Karp PD, Sander C, Bader GD (2010) The 

BioPAX community standard for pathway data sharing. Nat Biotechnol 
28(9):935–942. https​://doi.org/10.1038/nbt.1666

	 46.	 Wf4Ever Project (2019) Wf4Ever github repository. http://wf4ev​er.githu​
b.io/. Accessed 9 Jan 2019

	 47.	 Cooper J, Vik JO, Waltemath D (2015) A call for virtual experiments: 
accelerating the scientific process. Progr Biophys Mol Biol 117(1):99–
106. https​://doi.org/10.1016/j.pbiom​olbio​.2014.10.001

	 48.	 Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis 
B, Gautier L, Ge Y, Gentry J et al (2004) Bioconductor: open software 
development for computational biology and bioinformatics. Genome 
Biol 5(10):80. https​://doi.org/10.1186/gb-2004-5-10-r80

	 49.	 Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan 
M, Nekrutenko A, Taylor J (2010) Galaxy: a web-based genome analysis 
tool for experimentalists. Curr Protoc Mol Biol Chapt 19:19–10121. https​
://doi.org/10.1002/04711​42727​.mb191​0s89

	 50.	 Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, 
Blankenberg D, Albert I, Taylor J et al (2005) Galaxy: a platform for inter-
active large-scale genome analysis. Genome Res 15(10):1451–1455. 
https​://doi.org/10.1101/gr.40865​05

	 51.	 Goecks J, Nekrutenko A, Taylor J (2010) Galaxy Team: Galaxy: a com-
prehensive approach for supporting accessible, reproducible, and 
transparent computational research in the life sciences. Genome Biol 
11(8):86. https​://doi.org/10.1186/gb-2010-11-8-r86

	 52.	 Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard 
MA, Rambaut A, Drummond AJ (2014) Beast 2: a software platform for 
bayesian evolutionary analysis. PLoS Comput Biol 10(4):1003537. https​
://doi.org/10.1371/journ​al.pcbi.10035​37

	 53.	 Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, 
Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N, Matschiner M, 
Mendes FK, Müller NF, Ogilvie HA, du Plessis L, Popinga A, Rambaut A, 
Rasmussen D, Siveroni I, Suchard MA, Wu C-H, Xie D, Zhang C, Stadler 
T, Drummond AJ (2019) Beast 2.5: An advanced software platform for 
bayesian evolutionary analysis. PLoS Comput Biol 15(4):1006650. https​
://doi.org/10.1371/journ​al.pcbi.10066​50

	 54.	 Teytelman L protocols.io - the #1 science methods repository
	 55.	 High Level Expert Group on Scientific Data (2010) Riding the Wave—

how Europe can gain from the rising tide of scientific data. https​://
www.foste​ropen​scien​ce.eu/conte​nt/ridin​g-wave-how-europ​e-can-
gain-risin​g-tide-scien​tific​-data/. Accessed 9 Jan 2019

	 56.	 National Institutes of Health (2019) NIH Grants Policy Statement. https​
://grant​s.nih.gov/polic​y/nihgp​s/index​.htm. Accessed 9 Jan 2019

	 57.	 NordForsk (2019) Open Access to Research Data - Status, Issues and 
Outlook. https​://www.nordf​orsk.org/en/publi​catio​ns/publi​catio​ns_
conta​iner/open-acces​s-to-resea​rch-data-2013-statu​s-issue​s-and-outlo​
ok/. Accessed 9 Jan 2019

	 58.	 Borgman CL (2015) Big data, little data, no data: scholarship in the 
networked world. MIT Press, Cambridge

	 59.	 Margolis R, Derr L, Dunn M, Huerta M, Larkin J, Sheehan J, Guyer M, 
Green ED (2014) The national institutes of health’s big data to knowl-
edge (bd2k) initiative: capitalizing on biomedical big data. J Am Med 
Inform Assoc 21(6):957–958. https​://doi.org/10.1136/amiaj​nl-2014-
00297​4

	 60.	 Pasquetto IV, Randles BM, Borgman CL (2017) On the reuse of scientific 
data. Data Sci J. https​://doi.org/10.5334/dsj-2017-008

	 61.	 Wallis JC, Rolando E, Borgman CL (2013) If we share data, will anyone 
use them? data sharing and reuse in the long tail of science and 
technology. PLoS ONE 8(7):67332. https​://doi.org/10.1371/journ​
al.pone.00673​32

	 62.	 Chavan V, Penev L (2011) The data paper: a mechanism to incentivize 
data publishing in biodiversity science. BMC Bioinform 12 Suppl 15:2. 
https​://doi.org/10.1186/1471-2105-12-S15-S2

	 63.	 Gorgolewski KJ, Margulies DS, Milham MP (2013) Making data sharing 
count: a publication-based solution. Front Neurosci 7:9. https​://doi.
org/10.3389/fnins​.2013.00009​

	 64.	 Searls DB (2010) The roots of bioinformatics. PLoS Comput Biol 
6(6):1000809. https​://doi.org/10.1371/journ​al.pcbi.10008​09

	 65.	 Kanwal S, Khan FZ, Lonie A, Sinnott RO (2017) Investigating reproduc-
ibility and tracking provenance—a genomic workflow case study. BMC 
Bioinform 18(1):337. https​://doi.org/10.1186/s1285​9-017-1747-0

	 66.	 Kim Y-M, Poline J-B, Dumas G (2017) Experimenting with reproducibility 
in bioinformatics. BioRxiv. https​://doi.org/10.1101/14350​3

https://doi.org/10.1038/35015718
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1186/s13321-017-0217-z
https://doi.org/10.1186/s13321-017-0217-z
http://www.dictionary.com/browse/reproducibility
http://www.dictionary.com/browse/reproducibility
https://doi.org/10.1128/IAI.00908-10
https://doi.org/10.2164/jandrol.06007
https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
https://doi.org/10.1038/nbt.1411
https://doi.org/10.1038/nbt.1411
https://doi.org/10.1038/nbt926
https://doi.org/10.1038/nbt926
https://doi.org/10.1038/nbt.1666
http://wf4ever.github.io/
http://wf4ever.github.io/
https://doi.org/10.1016/j.pbiomolbio.2014.10.001
https://doi.org/10.1186/gb-2004-5-10-r80
https://doi.org/10.1002/0471142727.mb1910s89
https://doi.org/10.1002/0471142727.mb1910s89
https://doi.org/10.1101/gr.4086505
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1371/journal.pcbi.1003537
https://doi.org/10.1371/journal.pcbi.1003537
https://doi.org/10.1371/journal.pcbi.1006650
https://doi.org/10.1371/journal.pcbi.1006650
https://www.fosteropenscience.eu/content/riding-wave-how-europe-can-gain-rising-tide-scientific-data/
https://www.fosteropenscience.eu/content/riding-wave-how-europe-can-gain-rising-tide-scientific-data/
https://www.fosteropenscience.eu/content/riding-wave-how-europe-can-gain-rising-tide-scientific-data/
https://grants.nih.gov/policy/nihgps/index.htm
https://grants.nih.gov/policy/nihgps/index.htm
https://www.nordforsk.org/en/publications/publications_container/open-access-to-research-data-2013-status-issues-and-outlook/
https://www.nordforsk.org/en/publications/publications_container/open-access-to-research-data-2013-status-issues-and-outlook/
https://www.nordforsk.org/en/publications/publications_container/open-access-to-research-data-2013-status-issues-and-outlook/
https://doi.org/10.1136/amiajnl-2014-002974
https://doi.org/10.1136/amiajnl-2014-002974
https://doi.org/10.5334/dsj-2017-008
https://doi.org/10.1371/journal.pone.0067332
https://doi.org/10.1371/journal.pone.0067332
https://doi.org/10.1186/1471-2105-12-S15-S2
https://doi.org/10.3389/fnins.2013.00009
https://doi.org/10.3389/fnins.2013.00009
https://doi.org/10.1371/journal.pcbi.1000809
https://doi.org/10.1186/s12859-017-1747-0
https://doi.org/10.1101/143503


Page 25 of 30Schaduangrat et al. J Cheminform            (2020) 12:9 

	 67.	 Sandve GK, Nekrutenko A, Taylor J, Hovig E (2013) Ten simple rules for 
reproducible computational research. PLoS Comput Biol 9(10):1003285. 
https​://doi.org/10.1371/journ​al.pcbi.10032​85

	 68.	 Van Neste C, Gansemans Y, De Coninck D, Van Hoofstat D, Van Criekinge 
W, Deforce D, Van Nieuwerburgh F (2015) Forensic massively paral-
lel sequencing data analysis tool: implementation of MyFLq as a 
standalone web- and Illumina BaseSpace®-application. Forensic Sci Int 
Genet 15:2–7. https​://doi.org/10.1016/j.fsige​n.2014.10.006

	 69.	 Dove ES, Joly Y, Tassé A-M (2015) Public Population Project in Genomics 
and Society (P3G) International Steering Committee and Interna-
tional Cancer Genome Consortium (ICGC) Ethics and Policy Com-
mittee, Knoppers, B.M.: genomic cloud computing: legal and ethical 
points to consider. Eur J Human Genet 23(10):1271–1278. https​://doi.
org/10.1038/ejhg.2014.196

	 70.	 Docker Inc. (2019) Docker. https​://www.docke​r.com/. Accessed 9 Jan 
2019

	 71.	 da Veiga Leprevost F, Gruning BA, Alves Aflitos S, Rost HL, Uszkoreit J, 
Barsnes H, Vaudel M, Moreno P, Gatto L, Weber J, Bai M, Jimenez RC, 
Sachsenberg T, Pfeuffer J, Vera Alvarez R, Griss J, Nesvizhskii AI, Perez-
Riverol Y (2017) BioContainers: an open-source and community-driven 
framework for software standardization. Bioinformatics 33(16):2580–
2582. https​://doi.org/10.1093/bioin​forma​tics/btx19​2

	 72.	 Kim B, Ali T, Lijeron C, Afgan E, Krampis K (2017) Bio-docklets: virtualiza-
tion containers for single-step execution of ngs pipelines. GigaScience 
6(8):1–7. https​://doi.org/10.1093/gigas​cienc​e/gix04​8

	 73.	 Menegidio FB, Jabes DL, de Oliveira R Costa, Nunes LR (2018) Dugong: a 
Docker image, based on Ubuntu Linux, focused on reproducibility and 
replicability for bioinformatics analyses. Bioinformatics 34(3):514–515. 
https​://doi.org/10.1093/bioin​forma​tics/btx55​4

	 74.	 Kulkarni N, Alessandri L, Panero R, Arigoni M, Olivero M, Ferrero G, 
Cordero F, Beccuti M, Calogero RA (2018) Reproducible bioinformatics 
project: a community for reproducible bioinformatics analysis pipelines. 
BMC Bioinform 19(Suppl 10):349. https​://doi.org/10.1186/s1285​
9-018-2296-x

	 75.	 Rozenblatt-Rosen O, Stubbington MJT, Regev A, Teichmann SA (2017) 
The Human Cell Atlas: from vision to reality. Nature 550(7677):451–453. 
https​://doi.org/10.1038/55045​1a

	 76.	 Peng RD (2011) Reproducible research in computational science. Sci-
ence 334(6060):1226–1227. https​://doi.org/10.1126/scien​ce.12138​47

	 77.	 Stodden V, Leisch F, Peng RD (2014) Implementing reproducible 
research. CRC Press/Taylor & Francis Group, Boca Raton

	 78.	 Scientific Data (2019) Recommended Data Repositories. https​://www.
natur​e.com/sdata​/polic​ies/repos​itori​es/. Accessed 9 Jan 2019

	 79.	 Dryad (2019) Dryad Digital Repository. https​://datad​ryad.org/. Accessed 
9 Jan 2019

	 80.	 Dryad (2019) DryadLab. http://datad​ryad.org/pages​/dryad​lab/. 
Accessed 9 Jan 2019

	 81.	 figshare (2019) figshare—credit for all your research. http://www.figsh​
are.com/. Accessed 9 Jan 2019

	 82.	 Singh J (2011) Figshare. J Pharmacol Pharmacother 2(2):138–139. https​
://doi.org/10.4103/0976-500X.81919​

	 83.	 Zenodo (2019) Zenodo—Research. Shared. https​://zenod​o.org/. 
Accessed 9 Jan 2019

	 84.	 Open Science Framework (2019) OSF Home. https​://osf.io/. Accessed 9 
Jan 2019

	 85.	 Center for Open Science (2019) Center for Open Science Website. https​
://cos.io/. Accessed 9 Jan 2019

	 86.	 Foster ED, Deardorff A (2017) Open science framework (osf ). J Med Lib 
Assoc 105(2):203–206. https​://doi.org/10.5195/JMLA.2017.88

	 87.	 Macmillan Publishers Limited (2019) Scientific Data. https​://www.natur​
e.com/sdata​/. Accessed 9 Jan 2019

	 88.	 Elsevier (2019) Data in Brief. https​://www.journ​als.elsev​ier.com/data-in-
brief​/. Accessed 9 Jan 2019

	 89.	 MDPI (2019) Data. http://www.mdpi.com/journ​al/data/. Accessed 9 Jan 
2019

	 90.	 F1000Research (2019) F1000Research | Open Access Publishing 
Platform | Beyond a Research Journal. https​://f1000​resea​rch.com/. 
Accessed 9 Jan 2019

	 91.	 arXiv (2019) arXiv​.org e-Print archive. https​://arxiv​.org/. Accessed 9 Jan 
2019

	 92.	 bioRxiv (2019) bioRxiv.org—the preprint server for Biology. https​://
www.biorx​iv.org/. Accessed 9 Jan 2019

	 93.	 ChemRxiv (2019) ChemRxiv: the Preprint Server for Chemistry. https​://
chemr​xiv.org/. Accessed 9 Jan 2019

	 94.	 PeerJ (2019) PeerJ Preprints. https​://peerj​.com/prepr​ints/. Accessed 9 
Jan 2019

	 95.	 Bitbucket (2019) Bitbucket - The Git solution for professional teams. 
https​://bitbu​cket.org/. Accessed 9 Jan 2019

	 96.	 GitLab (2019) GitLab. https​://about​.gitla​b.com/. Accessed 9 Jan 2019
	 97.	 Assembla (2019) Assembla: Secure Git, Secure Software Development 

in the Cloud. https​://www.assem​bla.com/. Accessed 9 Jan 2019
	 98.	 Google (2019) Cloud Source Repositories. https​://cloud​.googl​e.com/

sourc​e-repos​itori​es/. Accessed 9 Jan 2019
	 99.	 Sofroniew NJ, Vlasov YA, Hires SA, Freeman J, Svoboda K (2015) Neural 

coding in barrel cortex during whisker-guided locomotion. eLife. https​
://doi.org/10.7554/eLife​.12559​

	100.	 Li N, Daie K, Svoboda K, Druckmann S (2016) Robust neuronal dynamics 
in premotor cortex during motor planning. Nature 532(7600):459–464. 
https​://doi.org/10.1038/natur​e1764​3

	101.	 Code Ocean (2019) Code Ocean—Professional tools for researchers. 
https​://codeo​cean.com/. Accessed 9 Jan 2019

	102.	 Cornell Tech (2019) Code Ocean: Tackling Reproducibility and Transpar-
ency in Scientific Research. https​://tech.corne​ll.edu/news/code-ocean​
-tackl​ing-repro​ducib​ility​-and-trans​paren​cy-in- scien​tific​-resea​rch. 
Accessed 9 Jan 2019

	103.	 Perkel J (2019) TechBlog: C. Titus Brown: Predicting the paper of the 
future. http://blogs​.natur​e.com/natur​ejobs​/2017/06/01/techb​log-c-
titus​-brown​-predi​cting​-the-paper​-of-the-futur​e/. Accessed 9 Jan 2019

	104.	 Software Carpentry (2019) Software Carpentry—Teaching basic lab 
skills for research computing. https​://softw​are-carpe​ntry.org/. Accessed 
9 Jan 2019

	105.	 Data Carpentry (2019) Data Carpentry—Building communities teach-
ing universal data literacy. http://www.datac​arpen​try.org/. Accessed 9 
Jan 2019

	106.	 Birney E, Hudson TJ, Green ED, Gunter C, Eddy S, Rogers J, Harris JR, 
Ehrlich SD, Apweiler R, Austin CP, Berglund L, Bobrow M, Bountra C, 
Brookes AJ, Cambon-Thomsen A, Carter NP, Chisholm RL, Contreras JL, 
Cooke RM, Crosby WL, Dewar K, Durbin R, Dyke SO, Ecker JR, El Emam 
K, Feuk L, Gabriel SB, Gallacher J, Gelbart WM, Granell A, Guarner F, 
Hubbard T, Jackson SA, Jennings JL, Joly Y, Jones SM, Kaye J, Kennedy 
KL, Knoppers BM, Kyrpides NC, Lowrance WW, Luo J, MacKay JJ, Martin-
Rivera L, McCombie WR, McPherson JD, Miller L, Miller W, Moerman D, 
Mooser V, Morton CC, Ostell JM, Ouellette BF, Parkhill J, Raina PS, Rawl-
ings C, Scherer SE, Scherer SW, Schofield PN, Sensen CW, Stodden VC, 
Sussman MR, Tanaka T, Thornton J, Tsunoda T, Valle D, Vuorio EI, Walker 
NM, Wallace S, Weinstock G, Whitman WB, Worley KC, Wu C, Wu J, Yu J 
(2009) Prepublication data sharing. Nature 461(7261):168–170. https​://
doi.org/10.1038/46116​8a

	107.	 González-Medina M, Naveja JJ, Sánchez-Cruz N, Medina-Franco JL 
(2017) Open chemoinformatic resources to explore the structure, prop-
erties and chemical space of molecules. RSC Adv 7(85):54153–54163. 
https​://doi.org/10.1039/C7RA1​1831G​

	108.	 Hasegawa K, Funatsu K (2014) Data mining of chemogenomics data 
using bi-modal PLS methods and chemical interpretation for molecular 
design. Mol Inform 33(11–12):749–756. https​://doi.org/10.1002/
minf.20140​0061

	109.	 Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, 
Magariños MP, Mosquera JF, Mutowo P, Nowotka M, Gordillo-Marañón 
M, Hunter F, Junco L, Mugumbate G, Rodriguez-Lopez M, Atkinson 
F, Bosc N, Radoux CJ, Segura-Cabrera A, Hersey A, Leach AR (2019) 
ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 
47(D1):930–940. https​://doi.org/10.1093/nar/gky10​75

	110.	 Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, 
Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2019) PubChem 
2019 update: improved access to chemical data. Nucleic Acids Res 
47(D1):1102–1109. https​://doi.org/10.1093/nar/gky10​33

	111.	 Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) 
BindingDB in 2015: a public database for medicinal chemistry, com-
putational chemistry and systems pharmacology. Nucleic Acids Res 
44(D1):1045–53. https​://doi.org/10.1093/nar/gkv10​72

https://doi.org/10.1371/journal.pcbi.1003285
https://doi.org/10.1016/j.fsigen.2014.10.006
https://doi.org/10.1038/ejhg.2014.196
https://doi.org/10.1038/ejhg.2014.196
https://www.docker.com/
https://doi.org/10.1093/bioinformatics/btx192
https://doi.org/10.1093/gigascience/gix048
https://doi.org/10.1093/bioinformatics/btx554
https://doi.org/10.1186/s12859-018-2296-x
https://doi.org/10.1186/s12859-018-2296-x
https://doi.org/10.1038/550451a
https://doi.org/10.1126/science.1213847
https://www.nature.com/sdata/policies/repositories/
https://www.nature.com/sdata/policies/repositories/
https://datadryad.org/
http://datadryad.org/pages/dryadlab/
http://www.figshare.com/
http://www.figshare.com/
https://doi.org/10.4103/0976-500X.81919
https://doi.org/10.4103/0976-500X.81919
https://zenodo.org/
https://osf.io/
https://cos.io/
https://cos.io/
https://doi.org/10.5195/JMLA.2017.88
https://www.nature.com/sdata/
https://www.nature.com/sdata/
https://www.journals.elsevier.com/data-in-brief/
https://www.journals.elsevier.com/data-in-brief/
http://www.mdpi.com/journal/data/
https://f1000research.com/
http://arxiv.org/abs/org
https://arxiv.org/
https://www.biorxiv.org/
https://www.biorxiv.org/
https://chemrxiv.org/
https://chemrxiv.org/
https://peerj.com/preprints/
https://bitbucket.org/
https://about.gitlab.com/
https://www.assembla.com/
https://cloud.google.com/source-repositories/
https://cloud.google.com/source-repositories/
https://doi.org/10.7554/eLife.12559
https://doi.org/10.7554/eLife.12559
https://doi.org/10.1038/nature17643
https://codeocean.com/
https://tech.cornell.edu/news/code-ocean-tackling-reproducibility-and-transparency-in-%20scientific-research
https://tech.cornell.edu/news/code-ocean-tackling-reproducibility-and-transparency-in-%20scientific-research
http://blogs.nature.com/naturejobs/2017/06/01/techblog-c-titus-brown-predicting-the-paper-of-the-future/
http://blogs.nature.com/naturejobs/2017/06/01/techblog-c-titus-brown-predicting-the-paper-of-the-future/
https://software-carpentry.org/
http://www.datacarpentry.org/
https://doi.org/10.1038/461168a
https://doi.org/10.1038/461168a
https://doi.org/10.1039/C7RA11831G
https://doi.org/10.1002/minf.201400061
https://doi.org/10.1002/minf.201400061
https://doi.org/10.1093/nar/gky1075
https://doi.org/10.1093/nar/gky1033
https://doi.org/10.1093/nar/gkv1072


Page 26 of 30Schaduangrat et al. J Cheminform            (2020) 12:9 

	112.	 Gilson MK (2019) BindingDB. https​://www.bindi​ngdb.org. Accessed 9 
Jan 2019

	113.	 Ursu O, Holmes J, Knockel J, Bologa CG, Yang JJ, Mathias SL, Nelson SJ, 
Oprea TI (2017) DrugCentral: online drug compendium. Nucleic Acids 
Res 45(D1):932–939. https​://doi.org/10.1093/nar/gkw99​3

	114.	 Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, 
Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame 
ZT, Han B, Zhou Y, Wishart DS (2014) DrugBank 4.0: shedding new 
light on drug metabolism. Nucleic Acids Res 42(Database issue):1091–
1097. https​://doi.org/10.1093/nar/gkt10​68

	115.	 Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, 
Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski 
A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson 
M (2018) DrugBank 5.0: a major update to the DrugBank database for 
2018. Nucleic Acids Res 46(D1):1074–1082. https​://doi.org/10.1093/nar/
gkx10​37

	116.	 Mathias SL, Hines-Kay J, Yang JJ, Zahoransky-Kohalmi G, Bologa CG, 
Ursu O, Oprea TI (2013) The CARLSBAD database: a confederated 
database of chemical bioactivities. Database 2013:044. https​://doi.
org/10.1093/datab​ase/bat04​4

	117.	 Placzek S, Schomburg I, Chang A, Jeske L, Ulbrich M, Tillack J, Schom-
burg D (2017) Brenda in 2017: new perspectives and new tools in 
brenda. Nucleic Acids Res 45(D1):380–388. https​://doi.org/10.1093/nar/
gkw95​2

	118.	 Sun J, Jeliazkova N, Chupakin V, Golib-Dzib J-F, Engkvist O, Carlsson L, 
Wegner J, Ceulemans H, Georgiev I, Jeliazkov V, Kochev N, Ashby TJ, 
Chen H (2017) ExCAPE-DB: an integrated large scale dataset facilitating 
big data analysis in chemogenomics. J Cheminform 9:17. https​://doi.
org/10.1186/s1332​1-017-0203-5

	119.	 Güner OF (2002) History and evolution of the pharmacophore concept 
in computer-aided drug design. Curr Top Med Chem 2(12):1321–
1332. https​://doi.org/10.2174/15680​26023​39294​0

	120.	 Patel Y, Gillet VJ, Bravi G, Leach AR (2002) A comparison of the pharma-
cophore identification programs: catalyst, disco and gasp. J Comput 
Aided Mol Des 16(8–9):653–681. https​://doi.org/10.1023/a:10219​54728​
347

	121.	 Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational 
methods in drug discovery. Pharmacol Rev 66(1):334–395. https​://doi.
org/10.1124/pr.112.00733​6

	122.	 Kolossov E, Lemon A (2006) Medicinal chemistry tools: making sense 
of hts data. Eur J Med Chem 41(2):166–175. https​://doi.org/10.1016/j.
ejmec​h.2005.10.005

	123.	 Doke SK, Dhawale SC (2015) Alternatives to animal testing: a review. 
Saudi Pharm J 23(3):223–229. https​://doi.org/10.1016/j.jsps.2013.11.002

	124.	 Cronin MT, Jaworska JS, Walker JD, Comber MH, Watts CD, Worth AP 
(2003) Use of QSARs in international decision-making frameworks to 
predict health effects of chemical substances. Environ Health Perspect 
111(10):1391–1401. https​://doi.org/10.1289/ehp.5760

	125.	 Hofer T, Gerner I, Gundert-Remy U, Liebsch M, Schulte A, Spielmann 
H, Vogel R, Wettig K (2004) Animal testing and alternative approaches 
for the human health risk assessment under the proposed new Euro-
pean chemicals regulation. Arch Toxicol 78(10):549–564. https​://doi.
org/10.1007/s0020​4-004-0577-9

	126.	 Ashby J (1985) Fundamental structural alerts to potential carcinogenic-
ity or noncarcinogenicity. Environ Mutagen 7(6):919–921. https​://doi.
org/10.1002/em.28600​70613​

	127.	 Ashby J, Tennant RW (1991) Definitive relationships among chemi-
cal structure, carcinogenicity and mutagenicity for 301 chemicals 
tested by the U.S. NTP. Mutation Res 257(3):229–306. https​://doi.
org/10.1016/0165-1110(91)90003​-e

	128.	 Devillers J, Mombelli E, Samsera R (2011) Structural alerts for estimating 
the carcinogenicity of pesticides and biocides. SAR QSAR Environ Res 
22(1–2):89–106. https​://doi.org/10.1080/10629​36X.2010.54834​9

	129.	 Aptula AO, Patlewicz G, Roberts DW (2005) Skin sensitization: reaction 
mechanistic applicability domains for structure-activity relationships. 
Chem Res Toxicol 18(9):1420–1426. https​://doi.org/10.1021/tx050​075m

	130.	 Roberts DW, Patlewicz G, Kern PS, Gerberick F, Kimber I, Dearman RJ, 
Ryan CA, Basketter DA, Aptula AO (2007) Mechanistic applicability 
domain classification of a local lymph node assay dataset for skin sen-
sitization. Chem Res Toxicol 20(7):1019–1030. https​://doi.org/10.1021/
tx700​024w

	131.	 Blake JF (2005) Identification and evaluation of molecular proper-
ties related to preclinical optimization and clinical fate. Med Chem 
1(6):649–655. https​://doi.org/10.2174/15734​06057​74598​081

	132.	 Hann M, Hudson B, Lewell X, Lifely R, Miller L, Ramsden N (1999) Stra-
tegic pooling of compounds for high-throughput screening. J Chem 
Inform Comput Sci 39(5):897–902. https​://doi.org/10.1021/ci990​423o

	133.	 Pearce BC, Sofia MJ, Good AC, Drexler DM, Stock DA (2006) An empirical 
process for the design of high-throughput screening deck filters. J 
Chem Inform Model 46(3):1060–1068. https​://doi.org/10.1021/ci050​
504m

	134.	 Alves V, Muratov E, Capuzzi S, Politi R, Low Y, Braga R, Zakharov AV, 
Sedykh A, Mokshyna E, Farag S, Andrade CH, Kuz’min VE, Fourchesh 
D, Tropsha A (2016) Alarms about structural alerts. Green Chem 
18(16):4348–4360. https​://doi.org/10.1039/C6GC0​1492E​

	135.	 Labute P (2000) A widely applicable set of descriptors. J Mol Graph 
Model 18(4–5):464–477. https​://doi.org/10.1016/s1093​-3263(00)00068​
-1

	136.	 Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, Prachayasittikul 
V (2009) A practical overview of quantitative structure–activity relation-
ship. EXCLI J 8:74–88. https​://doi.org/10.17877​/DE290​R-690

	137.	 Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2010) 
Advances in computational methods to predict the biological activity 
of compounds. Expert Opin Drug Discov 5(7):633–654. https​://doi.
org/10.1517/17460​441.2010.49282​7

	138.	 Randić M (2001) Novel shape descriptors for molecular graphs. J Chem 
Inform Comput Sci 41(3):607–613. https​://doi.org/10.1021/ci000​1031

	139.	 Senese CL, Duca J, Pan D, Hopfinger AJ, Tseng YJ (2004) 4D-fingerprints, 
universal QSAR and QSPR descriptors. J Chem Inform Comput Sci 
44(5):1526–1539. https​://doi.org/10.1021/ci049​898s

	140.	 Shoombuatong W, Prathipati P, Owasirikul W, Worachartcheewan A, 
Simeon S, Anuwongcharoen N, Wikberg JES, Nantasenamat C (2017) 
Towards the revival of interpretable QSAR models. In: Roy K (ed) 
Advances in QSAR modeling challenges and advances in computa-
tional chemistry and physics, vol 24. Springer, Cham, pp 3–55. https​
://doi.org/10.1007/978-3-319-56850​-8_1

	141.	 Hawkins DM, Basak SC, Shi X (2001) QSAR with few compounds and 
many features. J Chem Inform Comput Sci 41(3):663–670. https​://doi.
org/10.1021/ci000​1177

	142.	 Rücker C, Rücker G, Meringer M (2007) y-randomization and its vari-
ants in QSPR/QSAR. J Chem Inform Model 47(6):2345–2357. https​://
doi.org/10.1021/ci700​157b

	143.	 Weaver S, Gleeson MP (2008) The importance of the domain of 
applicability in QSAR modeling. J Mol Graph Model 26(8):1315–1326. 
https​://doi.org/10.1016/j.jmgm.2008.01.002

	144.	 Gleeson MP, Modi S, Bender A, Robinson RLM, Kirchmair J, Promkat-
kaew M, Hannongbua S, Glen RC (2012) The challenges involved in 
modeling toxicity data in silico: a review. Curr Pharm Des 18(9):1266–
1291. https​://doi.org/10.2174/13816​12127​99436​359

	145.	 Konovalov DA, Llewellyn LE, Vander Heyden Y, Coomans D (2008) 
Robust cross-validation of linear regression QSAR models. J Chem 
Inform Model 48(10):2081–2094. https​://doi.org/10.1021/ci800​209k

	146.	 Eklund M, Norinder U, Boyer S, Carlsson L (2012) Application of 
conformal prediction in QSAR. IFIP Adv Inform Commun Technol 
382:166–175. https​://doi.org/10.1007/978-3-642-33412​-2_17

	147.	 Bosc N, Atkinson F, Felix E, Gaulton A, Hersey A, Leach AR (2019) 
Large scale comparison of QSAR and conformal prediction methods 
and their applications in drug discovery. J Cheminform 11(1):4. https​
://doi.org/10.1186/s1332​1-018-0325-4

	148.	 Gleeson MP, Montanari D (2012) Strategies for the generation, valida-
tion and application of in silico ADMET models in lead generation 
and optimization. Exp Opin Drug Metab Toxicol 8(11):1435–1446. 
https​://doi.org/10.1517/17425​255.2012.71131​7

	149.	 Topliss JG, Edwards RP (1979) Chance factors in studies of quanti-
tative structure–activity relationships. J Med Chem 22(10):1238–
1244. https​://doi.org/10.1021/jm001​96a01​7

	150.	 Lombardo F, Gifford E, Shalaeva MY (2003) In silico ADME predic-
tion: data, models, facts and myths. Mini Rev Med Chem 3(8):861–
875. https​://doi.org/10.2174/13895​57033​48762​9

	151.	 Wood DJ, Buttar D, Cumming JG, Davis AM, Norinder U, Rodgers SL 
(2011) Automated QSAR with a hierarchy of global and local models. 

https://www.bindingdb.org
https://doi.org/10.1093/nar/gkw993
https://doi.org/10.1093/nar/gkt1068
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/nar/gkx1037
https://doi.org/10.1093/database/bat044
https://doi.org/10.1093/database/bat044
https://doi.org/10.1093/nar/gkw952
https://doi.org/10.1093/nar/gkw952
https://doi.org/10.1186/s13321-017-0203-5
https://doi.org/10.1186/s13321-017-0203-5
https://doi.org/10.2174/1568026023392940
https://doi.org/10.1023/a:1021954728347
https://doi.org/10.1023/a:1021954728347
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1124/pr.112.007336
https://doi.org/10.1016/j.ejmech.2005.10.005
https://doi.org/10.1016/j.ejmech.2005.10.005
https://doi.org/10.1016/j.jsps.2013.11.002
https://doi.org/10.1289/ehp.5760
https://doi.org/10.1007/s00204-004-0577-9
https://doi.org/10.1007/s00204-004-0577-9
https://doi.org/10.1002/em.2860070613
https://doi.org/10.1002/em.2860070613
https://doi.org/10.1016/0165-1110(91)90003-e
https://doi.org/10.1016/0165-1110(91)90003-e
https://doi.org/10.1080/1062936X.2010.548349
https://doi.org/10.1021/tx050075m
https://doi.org/10.1021/tx700024w
https://doi.org/10.1021/tx700024w
https://doi.org/10.2174/157340605774598081
https://doi.org/10.1021/ci990423o
https://doi.org/10.1021/ci050504m
https://doi.org/10.1021/ci050504m
https://doi.org/10.1039/C6GC01492E
https://doi.org/10.1016/s1093-3263(00)00068-1
https://doi.org/10.1016/s1093-3263(00)00068-1
https://doi.org/10.17877/DE290R-690
https://doi.org/10.1517/17460441.2010.492827
https://doi.org/10.1517/17460441.2010.492827
https://doi.org/10.1021/ci0001031
https://doi.org/10.1021/ci049898s
https://doi.org/10.1007/978-3-319-56850-8_1
https://doi.org/10.1007/978-3-319-56850-8_1
https://doi.org/10.1021/ci0001177
https://doi.org/10.1021/ci0001177
https://doi.org/10.1021/ci700157b
https://doi.org/10.1021/ci700157b
https://doi.org/10.1016/j.jmgm.2008.01.002
https://doi.org/10.2174/138161212799436359
https://doi.org/10.1021/ci800209k
https://doi.org/10.1007/978-3-642-33412-2_17
https://doi.org/10.1186/s13321-018-0325-4
https://doi.org/10.1186/s13321-018-0325-4
https://doi.org/10.1517/17425255.2012.711317
https://doi.org/10.1021/jm00196a017
https://doi.org/10.2174/1389557033487629


Page 27 of 30Schaduangrat et al. J Cheminform            (2020) 12:9 

Mol Inform 30(11–12):960–972. https​://doi.org/10.1002/minf.20110​
0107

	152.	 Tetko IV, Bruneau P, Mewes H-W, Rohrer DC, Poda GI (2006) Can we 
estimate the accuracy of adme-tox predictions? Drug Disc Today 
11(15–16):700–707. https​://doi.org/10.1016/j.drudi​s.2006.06.013

	153.	 37th Joint Meeting of the Chemicals Committee (2004) OECD 
principles for the validation, for regulatory purposes, of (quantitative) 
structure–activity relationship models. https​://www.oecd.org/chemi​
calsa​fety/risk-asses​sment​/37849​783.pdf. Accessed 9 Jan 2019

	154.	 Judson PN, Barber C, Canipa SJ, Poignant G, Williams R (2015) 
Establishing good computer modelling practice (gcmp) in the 
prediction of chemical toxicity. Mol Inform 34(5):276–283. https​://doi.
org/10.1002/minf.20140​0137

	155.	 Tropsha A (2010) Best practices for QSAR model development, 
validation, and exploitation. Mol Inform 29(6–7):476–488. https​://doi.
org/10.1002/minf.20100​0061

	156.	 Patel M, Chilton ML, Sartini A, Gibson L, Barber C, Covey-Crump 
L, Przybylak KR, Cronin MTD, Madden JC (2018) Assessment and 
reproducibility of quantitative structure–activity relationship models 
by the nonexpert. J Chem Inform Model 58(3):673–682. https​://doi.
org/10.1021/acs.jcim.7b005​23

	157.	 Arora PK, Patil VM, Gupta SP (2010) A QSAR study on some series 
of anti-hepatitis B virus (HBV) agents. Bioinformation 4(9):417–
420. https​://doi.org/10.6026/97320​63000​4417

	158.	 Kurdekar V, Jadhav HR (2015) A new open source data analysis 
python script for QSAR study and its validation. Med Chem Res 
24(4):1617–1625. https​://doi.org/10.1007/s0004​4-014-1240-5

	159.	 Research Collaboratory for Structural Bioinformatics (2019) The Pro-
tein Data Bank (PDB). http://www.rcsb.org/pdb/. Accessed 9 Jan 2019

	160.	 Fiser A, Sali A (2003) Modeller: generation and refinement of homol-
ogy-based protein structure models. Methods Enzymol 374:461–491. 
https​://doi.org/10.1016/S0076​-6879(03)74020​-8

	161.	 Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) Dock 4.0: search 
strategies for automated molecular docking of flexible molecule 
databases. J Comput Aided Mol Des 15(5):411–428. https​://doi.
org/10.1023/a:10111​15820​450

	162.	 Goodsell DS, Olson AJ (1990) Automated docking of substrates to 
proteins by simulated annealing. Proteins 8(3):195–202. https​://doi.
org/10.1002/prot.34008​0302

	163.	 Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, 
Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven 
JM, Peishoff CE, Head MS (2006) A critical assessment of docking 
programs and scoring functions. J Med Chem 49(20):5912–5931. https​
://doi.org/10.1021/jm050​362n

	164.	 Kubinyi H (1997) QSAR and 3D QSAR in drug design Part 2: applications 
and problems. Drug Discov Today 2:538–546. https​://doi.org/10.1016/
S1359​-6446(97)01084​-2

	165.	 Kubinyi H (1997) QSAR and 3D QSAR in drug design Part 1: methodol-
ogy. Drug Discov Today 2(11):457–467. https​://doi.org/10.1016/S1359​
-6446(97)01079​-9

	166.	 Cramer RD, Wendt B (2007) Pushing the boundaries of 3D-QSAR. J 
Comput Aided Mol Des 21(1–3):23–32. https​://doi.org/10.1007/s1082​
2-006-9100-0

	167.	 Leach AR (2001) Molecular modelling: principles and applications, 2nd 
edn. Pearson Education, Harlow

	168.	 Menikarachchi LC, Gascón JA (2010) QM/MM approaches in medicinal 
chemistry research. Curr Top Med Chem 10(1):46–54. https​://doi.
org/10.2174/15680​26107​90232​297

	169.	 Mulholland AJ (2007) Chemical accuracy in QM/MM calculations 
on enzyme-catalysed reactions. Chem Cent J 1:19. https​://doi.
org/10.1186/1752-153X-1-19

	170.	 Senn HM, Thiel W (2007) QM/MM studies of enzymes. Curr Opin Chem 
Biol 11(2):182–187. https​://doi.org/10.1016/j.cbpa.2007.01.684

	171.	 Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. 
Angewandte Chemie 48(7):1198–1229. https​://doi.org/10.1002/
anie.20080​2019

	172.	 Walker RC, Crowley MF, Case DA (2008) The implementation of a fast 
and accurate QM/MM potential method in amber. J Comput Chem 
29(7):1019–1031. https​://doi.org/10.1002/jcc.20857​

	173.	 Butcher EC, Berg EL, Kunkel EJ (2004) Systems biology in drug discov-
ery. Nat Biotechnol 22(10):1253–1259. https​://doi.org/10.1038/nbt10​17

	174.	 Pujol A, Mosca R, Farres J, Aloy P (2010) Unveiling the role of net-
work and systems biology in drug discovery. Trends Pharmacol Sci 
31(3):115–123. https​://doi.org/10.1016/j.tips.2009.11.006

	175.	 Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen 
NH, Kuijer MB, Matos RC, Tran TB, Whaley R, Glennon RA, Hert J, Thomas 
KL, Edwards DD, Shoichet BK, Roth BL (2009) Predicting new molecular 
targets for known drugs. Nature 462(7270):175–181. https​://doi.
org/10.1038/natur​e0850​6

	176.	 Ye H, Wei J, Tang K, Feuers R, Hong H (2016) Drug repositioning through 
network pharmacology. Curr Top Med Chem 16(30):3646–3656. https​://
doi.org/10.2174/15680​26616​66616​05301​81328​

	177.	 Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet 
BK (2007) Relating protein pharmacology by ligand chemistry. Nat 
Biotechnol 25(2):197–206. https​://doi.org/10.1038/nbt12​84

	178.	 Wu W, Zhang R, Salahub DR (2009) Nelfinavir: a magic bullet to 
annihilate cancer cells? Cancer Biol Ther 8(3):233–235. https​://doi.
org/10.4161/cbt.8.3.7789

	179.	 Dakshanamurthy S, Issa NT, Assefnia S, Seshasayee A, Peters OJ, Mad-
havan S, Uren A, Brown ML, Byers SW (2012) Predicting new indications 
for approved drugs using a proteochemometric method. J Med Chem 
55(15):6832–6848. https​://doi.org/10.1021/jm300​576q

	180.	 Schaduangrat N, Anuwongcharoen N, Phanus-umporn C, Sriwanich-
poom N, Wikberg JES, Nantasenamat C (2019) Chapter 10—Proteoche-
mometric modeling for drug repositioning. In: Roy K (ed) In Silico Drug 
Design. Academic Press, London, pp 281–302. https​://doi.org/10.1016/
B978-0-12-81612​5-8.00010​-9

	181.	 Waltemath D, Wolkenhauer O (2016) How modeling standards, 
software, and initiatives support reproducibility in systems biology and 
systems medicine. IEEE Trans Biomed Eng 63(10):1999–2006. https​://
doi.org/10.1109/TBME.2016.25554​81

	182.	 Medley JK, Goldberg AP, Karr JR (2016) Guidelines for reproducibly 
building and simulating systems biology models. IEEE Trans Biomed 
Eng 63(10):2015–2020. https​://doi.org/10.1109/TBME.2016.25919​60

	183.	 Waltemath D, Henkel R, Winter F, Wolkenhauer O (2013) Reproduc-
ibility of model-based results in systems biology. In: Prokop A, 
Csukás B (eds) Syst Biol. Springer, Dordrecht, pp 301–320. https​://doi.
org/10.1007/978-94-007-6803-1_10

	184.	 Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, 
Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M (2006) BioMod-
els database: a free, centralized database of curated, published, quanti-
tative kinetic models of biochemical and cellular systems. Nucleic Acids 
Res 34:689–691. https​://doi.org/10.1093/nar/gkj09​2

	185.	 Kirouac DC, Cicali B, Schmidt S (2019) Reproducibility of quantitative 
systems pharmacology models: current challenges and future opportu-
nities. CPT Pharmacometrics Syst Pharmacol 8(4):205–210. https​://doi.
org/10.1002/psp4.12390​

	186.	 Watanabe L, Barhak J, Myers C (2019) Toward reproducible disease 
models using the systems biology markup language. Simulation 
95(10):895–930. https​://doi.org/10.1177/00375​49718​79321​4

	187.	 Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, 
Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles 
ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, 
Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere 
N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, 
Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, 
Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) 
The systems biology markup language (SBML): a medium for represen-
tation and exchange of biochemical network models. Bioinformatics 
19(4):524–531. https​://doi.org/10.1093/bioin​forma​tics/btg01​5

	188.	 Swat MJ, Moodie S, Wimalaratne SM, Kristensen NR, Lavielle M, Mari A, 
Magni P, Smith MK, Bizzotto R, Pasotti L, Mezzalana E, Comets E, Sarr C, 
Terranova N, Blaudez E, Chan P, Chard J, Chatel K, Chenel M, Edwards 
D, Franklin C, Giorgino T, Glont M, Girard P, Grenon P, Harling K, Hooker 
AC, Kaye R, Keizer R, Kloft C, Kok JN, Kokash N, Laibe C, Laveille C, 
Lestini G, Mentre F, Munafo A, Nordgren R, Nyberg HB, Parra-Guillen 
ZP, Plan E, Ribba B, Smith G, Troconiz IF, Yvon F, Milligan PA, Harnisch 
L, Karlsson M, Hermjakob H, Le Novere N (2015) Pharmacometrics 
Markup Language (PharmML): opening new perspectives for model 
exchange in drug development. CPT Pharmacometrics Syst Pharmacol 
4(6):316–319. https​://doi.org/10.1002/psp4.57

https://doi.org/10.1002/minf.201100107
https://doi.org/10.1002/minf.201100107
https://doi.org/10.1016/j.drudis.2006.06.013
https://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf
https://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf
https://doi.org/10.1002/minf.201400137
https://doi.org/10.1002/minf.201400137
https://doi.org/10.1002/minf.201000061
https://doi.org/10.1002/minf.201000061
https://doi.org/10.1021/acs.jcim.7b00523
https://doi.org/10.1021/acs.jcim.7b00523
https://doi.org/10.6026/97320630004417
https://doi.org/10.1007/s00044-014-1240-5
http://www.rcsb.org/pdb/
https://doi.org/10.1016/S0076-6879(03)74020-8
https://doi.org/10.1023/a:1011115820450
https://doi.org/10.1023/a:1011115820450
https://doi.org/10.1002/prot.340080302
https://doi.org/10.1002/prot.340080302
https://doi.org/10.1021/jm050362n
https://doi.org/10.1021/jm050362n
https://doi.org/10.1016/S1359-6446(97)01084-2
https://doi.org/10.1016/S1359-6446(97)01084-2
https://doi.org/10.1016/S1359-6446(97)01079-9
https://doi.org/10.1016/S1359-6446(97)01079-9
https://doi.org/10.1007/s10822-006-9100-0
https://doi.org/10.1007/s10822-006-9100-0
https://doi.org/10.2174/156802610790232297
https://doi.org/10.2174/156802610790232297
https://doi.org/10.1186/1752-153X-1-19
https://doi.org/10.1186/1752-153X-1-19
https://doi.org/10.1016/j.cbpa.2007.01.684
https://doi.org/10.1002/anie.200802019
https://doi.org/10.1002/anie.200802019
https://doi.org/10.1002/jcc.20857
https://doi.org/10.1038/nbt1017
https://doi.org/10.1016/j.tips.2009.11.006
https://doi.org/10.1038/nature08506
https://doi.org/10.1038/nature08506
https://doi.org/10.2174/1568026616666160530181328
https://doi.org/10.2174/1568026616666160530181328
https://doi.org/10.1038/nbt1284
https://doi.org/10.4161/cbt.8.3.7789
https://doi.org/10.4161/cbt.8.3.7789
https://doi.org/10.1021/jm300576q
https://doi.org/10.1016/B978-0-12-816125-8.00010-9
https://doi.org/10.1016/B978-0-12-816125-8.00010-9
https://doi.org/10.1109/TBME.2016.2555481
https://doi.org/10.1109/TBME.2016.2555481
https://doi.org/10.1109/TBME.2016.2591960
https://doi.org/10.1007/978-94-007-6803-1_10
https://doi.org/10.1007/978-94-007-6803-1_10
https://doi.org/10.1093/nar/gkj092
https://doi.org/10.1002/psp4.12390
https://doi.org/10.1002/psp4.12390
https://doi.org/10.1177/0037549718793214
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1002/psp4.57


Page 28 of 30Schaduangrat et al. J Cheminform            (2020) 12:9 

	189.	 Barhak J (2019) MIST: Micro-simulation tool to support disease mod-
eling. https​://githu​b.com/scipy​-confe​rence​/scipy​2013_talks​/tree/maste​
r/talks​/jacob​_barha​k. Accessed 1 Nov 2019

	190.	 Hedley WJ, Nelson MR, Bullivant DP, Nielsen PF (2001) A short introduc-
tion to cellML. Philos Trans R Soc A 359(1783):1073–1089. https​://doi.
org/10.1098/rsta.2001.0817

	191.	 Medley JK, Choi K, Konig M, Smith L, Gu S, Hellerstein J, Sealfon SC, 
Sauro HM (2018) Tellurium notebooks—an environment for repro-
ducible dynamical modeling in systems biology. PLoS Comput Biol 
14(6):1006220. https​://doi.org/10.1371/journ​al.pcbi.10062​20

	192.	 Choi K, Medley JK, Konig M, Stocking K, Smith L, Gu S, Sauro HM (2018) 
Tellurium: an extensible python-based modeling environment for 
systems and synthetic biology. BioSystems 171:74–79. https​://doi.
org/10.1016/j.biosy​stems​.2018.07.006

	193.	 Kolpakov F, Akberdin I, Kashapov T, Kiselev L, Kolmykov S, Kondrakhin Y, 
Kutumova E, Mandrik N, Pintus S, Ryabova A, Sharipov R, Yevshin I, Kel A 
(2019) BioUML: an integrated environment for systems biology and col-
laborative analysis of biomedical data. Nucleic Acids Res 47(W1):225–
233. https​://doi.org/10.1093/nar/gkz44​0

	194.	 Drawert B, Trogdon M, Toor S, Petzold L, Hellander A (2016) MOLNs: A 
cloud platform for interactive, reproducible, and scalable spatial sto-
chastic computational experiments in systems biology using PyURDME. 
SIAM J Sci Comput 38(3):179–202. https​://doi.org/10.1137/15M10​14784​

	195.	 Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP (2010) Compu-
tational solutions to large-scale data management and analysis. Nat 
Rev Genet 11(9):647–657. https​://doi.org/10.1038/nrg28​57

	196.	 Noble WS (2009) A quick guide to organizing computational biology 
projects. PLoS Comput Biol 5(7):1000424. https​://doi.org/10.1371/journ​
al.pcbi.10004​24

	197.	 Hassan M, Brown RD, VarmaO’brien S, Rogers D (2006) Cheminformat-
ics analysis and learning in a data pipelining environment. Mol Divers 
10(3):283–299. https​://doi.org/10.1007/s1103​0-006-9041-5

	198.	 Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Thiel K, 
Wiswedel B (2009) KNIME—the Konstanz information miner. ACM SIG-
KDD Explor Newslett 11(1):26. https​://doi.org/10.1145/16562​74.16562​
80

	199.	 Cox R, Green DVS, Luscombe CN, Malcolm N, Pickett SD (2013) QSAR 
workbench: automating QSAR modeling to drive compound design. J 
Comput Aided Mol Des 27(4):321–336. https​://doi.org/10.1007/s1082​
2-013-9648-4

	200.	 Steinmetz FP, Mellor CL, Meinl T, Cronin MTD (2015) Screening 
chemicals for receptor-mediated toxicological and pharmacological 
endpoints: using public data to build screening tools within a KNIME 
workflow. Mol Inform 34(2–3):171–178. https​://doi.org/10.1002/
minf.20140​0188

	201.	 Nicola G, Berthold MR, Hedrick MP, Gilson MK (2015) Connecting 
proteins with drug-like compounds: open source drug discovery work-
flows with BindingDB and KNIME. Database. https​://doi.org/10.1093/
datab​ase/bav08​7

	202.	 Mazanetz MP, Marmon RJ, Reisser CBT, Morao I (2012) Drug discovery 
applications for knime: an open source data mining platform. Curr Top 
Med Chem 12(18):1965–1979. https​://doi.org/10.2174/15680​26128​
04910​331

	203.	 Kuhn T, Willighagen EL, Zielesny A, Steinbeck C (2010) Cdk-taverna: 
an open workflow environment for cheminformatics. BMC Bioinform 
11:159. https​://doi.org/10.1186/1471-2105-11-159

	204.	 Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E 
(2003) The Chemistry Development Kit (CDK): an open-source Java 
Library for Chemo- and Bioinformatics. J Chem Inform Comput Sci 
43(2):493–500. https​://doi.org/10.1021/ci025​584y

	205.	 Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova 
N, Kuhn S, Pluskal T, Rojas-Chertó M, Spjuth O, Torrance G, Evelo CT, 
Guha R, Steinbeck C (2017) The Chemistry Development Kit (CDK) v2.0: 
atom typing, depiction, molecular formulas, and substructure search-
ing. J Cheminform 9:33. https​://doi.org/10.1186/s1332​1-017-0220-4

	206.	 Lucas X, Grüning BA, Günther S (2014) ChemicalToolBoX and its 
application on the study of the drug like and purchasable space. J 
Cheminform 6(Suppl 1):51. https​://doi.org/10.1186/1758-2946-6-S1-P51

	207.	 Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame 
C (2017) Nextflow enables reproducible computational workflows. Nat 
Biotechnol 35(4):316–319. https​://doi.org/10.1038/nbt.3820

	208.	 Köster J, Rahmann S (2012) Snakemake-a scalable bioinformatics work-
flow engine. Bioinformatics 28(19):2520–2522. https​://doi.org/10.1093/
bioin​forma​tics/bts48​0

	209.	 Goodstadt L (2010) Ruffus: a lightweight python library for com-
putational pipelines. Bioinformatics 26(21):2778–2779. https​://doi.
org/10.1093/bioin​forma​tics/btq52​4

	210.	 Sadedin SP, Pope B, Oshlack A (2012) Bpipe: a tool for running and 
managing bioinformatics pipelines. Bioinformatics 28(11):1525–1526. 
https​://doi.org/10.1093/bioin​forma​tics/bts16​7

	211.	 Brandt J, Reisig W, Leser ULF (2017) Computation semantics of the func-
tional scientific workflow language cuneiform. J Funct Program. https​://
doi.org/10.1017/S0956​79681​70001​19

	212.	 Bernhardsson E, Freider E, Rouhani A (2012) Luigi GitHub reposi-
tory. https​://githu​b.com/spoti​fy/luigi​

	213.	 Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, 
Haddock SH, Huff KD, Mitchell IM, Plumbley MD, Waugh B, White EP, 
Wilson P (2014) Best practices for scientific computing. PLoS Biol 
12(1):1001745. https​://doi.org/10.1371/journ​al.pbio.10017​45

	214.	 Taschuk M, Wilson G (2017) Ten simple rules for making research 
software more robust. PLoS Comput Biol 13(4):1005412. https​://doi.
org/10.1371/journ​al.pcbi.10054​12

	215.	 Nowotka MM, Gaulton A, Mendez D, Bento AP, Hersey A, Leach A 
(2017) Using ChEMBL web services for building applications and data 
processing workflows relevant to drug discovery. Exp Opin Drug Discov 
12(8):757–767. https​://doi.org/10.1080/17460​441.2017.13390​32

	216.	 Alvarsson J, Lampa S, Schaal W, Andersson C, Wikberg JES, Spjuth O 
(2016) Large-scale ligand-based predictive modelling using support 
vector machines. J Cheminform 8:39. https​://doi.org/10.1186/s1332​
1-016-0151-5

	217.	 Lampa S, Alvarsson J, Spjuth O (2016) Towards agile large-scale 
predictive modelling in drug discovery with flow-based programming 
design principles. J Cheminform 8:67. https​://doi.org/10.1186/s1332​
1-016-0179-6

	218.	 Yoo AB, Jette MA, Grondona M (2003) SLURM: simple linux utility for 
resource management. In: Feitelson D, Rudolph L, Schwiegelshohn U 
(eds) Job scheduling strategies for parallel processing. Lecture notes in 
computer science, vol 2862. Springer, Berlin, pp 44–60

	219.	 Amstutz P, Crusoe MR, Tijanić N, Chapman B, Chilton J, Heuer M, 
Kartashov A, Leehr D, Ménager H, Nedeljkovich M, Scales M, Soiland-
Reyes S, Stojanovic L (2019) Common Workflow Language, v1.0. https​://
doi.org/10.6084/m9.figsh​are.31151​56.v2. Accessed 9 Jan 2019

	220.	 Chapman B, Gentry J, Lin M, Magee P, O’Connor B, Prabhakaran A, 
Van der Auwera G (2019) OpenWDL. http://www.openw​dl.org/. 
Accessed 9 Jan 2019

	221.	 Davie P (2010) Cloud computing: a drug discovery game changer? 
Innov Pharm Technol 33:34–36

	222.	 Dudley JT, Butte AJ (2010) In silico research in the era of cloud comput-
ing. Nat Biotechnol 28(11):1181–1185. https​://doi.org/10.1038/nbt11​
10-1181

	223.	 Garg V, Arora S, Gupta C (2011) Cloud computing approaches to 
accelerate drug discovery value chain. Comb Chem High Throughput 
Screen 14(10):861–871. https​://doi.org/10.2174/13862​07117​97537​085

	224.	 Moghadam BT, Alvarsson J, Holm M, Eklund M, Carlsson L, Spjuth O 
(2015) Scaling predictive modeling in drug development with cloud 
computing. J Chem Inform Model 55(1):19–25. https​://doi.org/10.1021/
ci500​580y

	225.	 Hurley DG, Budden DM, Crampin EJ (2015) Virtual reference environ-
ments: a simple way to make research reproducible. Brief Bioinform 
16(5):901–903. https​://doi.org/10.1093/bib/bbu04​3

	226.	 Piccolo SR, Frampton MB (2016) Tools and techniques for computa-
tional reproducibility. GigaScience 5(1):30. https​://doi.org/10.1186/
s1374​2-016-0135-4

	227.	 Jaghoori MM, Bleijlevens B, Olabarriaga SD (2016) 1001 ways to 
run AutoDock Vina for virtual screening. J Comput Aided Mol Des 
30(3):237–249. https​://doi.org/10.1007/s1082​2-016-9900-9

	228.	 McGuire R, Verhoeven S, Vass M, Vriend G, de Esch IJ, Lusher SJ, Leurs R, 
Ridder L, Kooistra AJ, Ritschel T, de Graaf C (2017) 3D-e-Chem-VM: struc-
tural cheminformatics research infrastructure in a freely available virtual 
machine. J Chem Inf Model 57(2):115–121. https​://doi.org/10.1021/acs.
jcim.6b006​86

https://github.com/scipy-conference/scipy2013_talks/tree/master/talks/jacob_barhak
https://github.com/scipy-conference/scipy2013_talks/tree/master/talks/jacob_barhak
https://doi.org/10.1098/rsta.2001.0817
https://doi.org/10.1098/rsta.2001.0817
https://doi.org/10.1371/journal.pcbi.1006220
https://doi.org/10.1016/j.biosystems.2018.07.006
https://doi.org/10.1016/j.biosystems.2018.07.006
https://doi.org/10.1093/nar/gkz440
https://doi.org/10.1137/15M1014784
https://doi.org/10.1038/nrg2857
https://doi.org/10.1371/journal.pcbi.1000424
https://doi.org/10.1371/journal.pcbi.1000424
https://doi.org/10.1007/s11030-006-9041-5
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1007/s10822-013-9648-4
https://doi.org/10.1007/s10822-013-9648-4
https://doi.org/10.1002/minf.201400188
https://doi.org/10.1002/minf.201400188
https://doi.org/10.1093/database/bav087
https://doi.org/10.1093/database/bav087
https://doi.org/10.2174/156802612804910331
https://doi.org/10.2174/156802612804910331
https://doi.org/10.1186/1471-2105-11-159
https://doi.org/10.1021/ci025584y
https://doi.org/10.1186/s13321-017-0220-4
https://doi.org/10.1186/1758-2946-6-S1-P51
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/btq524
https://doi.org/10.1093/bioinformatics/btq524
https://doi.org/10.1093/bioinformatics/bts167
https://doi.org/10.1017/S0956796817000119
https://doi.org/10.1017/S0956796817000119
https://github.com/spotify/luigi
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.1080/17460441.2017.1339032
https://doi.org/10.1186/s13321-016-0151-5
https://doi.org/10.1186/s13321-016-0151-5
https://doi.org/10.1186/s13321-016-0179-6
https://doi.org/10.1186/s13321-016-0179-6
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.6084/m9.figshare.3115156.v2
http://www.openwdl.org/
https://doi.org/10.1038/nbt1110-1181
https://doi.org/10.1038/nbt1110-1181
https://doi.org/10.2174/138620711797537085
https://doi.org/10.1021/ci500580y
https://doi.org/10.1021/ci500580y
https://doi.org/10.1093/bib/bbu043
https://doi.org/10.1186/s13742-016-0135-4
https://doi.org/10.1186/s13742-016-0135-4
https://doi.org/10.1007/s10822-016-9900-9
https://doi.org/10.1021/acs.jcim.6b00686
https://doi.org/10.1021/acs.jcim.6b00686


Page 29 of 30Schaduangrat et al. J Cheminform            (2020) 12:9 

	229.	 Alvim-Gaston M, Grese T, Mahoui A, Palkowitz AD, Pineiro-Nunez M, 
Watson I (2014) Open Innovation Drug Discovery (OIDD): a poten-
tial path to novel therapeutic chemical space. Curr Top Med Chem 
14(3):294–303. https​://doi.org/10.2174/15680​26613​66613​11271​25858​

	230.	 Ochoa R, Davies M, Papadatos G, Atkinson F, Overington JP (2014) 
myChEMBL: a virtual machine implementation of open data and chem-
informatics tools. Bioinformatics 30(2):298–300. https​://doi.org/10.1093/
bioin​forma​tics/btt66​6

	231.	 Ellingson SR, Baudry J (2011) High-throughput virtual molecular 
docking: Hadoop implementation of AutoDock4 on a private cloud. 
In: Proceedings of the second international workshop on emerging 
computational methods for the life sciences - ECMLS’11. ACM Press, 
New York, pp 33–38. https​://doi.org/10.1145/19960​23.19960​28

	232.	 Capuccini M, Ahmed L, Schaal W, Laure E, Spjuth O (2017) Large-scale 
virtual screening on public cloud resources with apache spark. J Chem-
inform 9:15. https​://doi.org/10.1186/s1332​1-017-0204-4

	233.	 Georgieva P, Lapins M, Spjuth O, Wikberg J (2019) Pharmaceutical 
bioinformatics: A free internet course for international and Swedish 
students offered by the University of Uppsala. http://www.pharm​bio.
org/. Accessed 1 Nov 2019

	234.	 Dahlö M, Haziza F, Kallio A, Korpelainen E, Bongcam-Rudloff E, Spjuth 
O (2015) BioImg.org: a catalog of virtual machine images for the life 
sciences. Bioinform Biol Insights 9:125–128. https​://doi.org/10.4137/BBI.
S2863​6

	235.	 Cito J, Gall HC (2016) Using docker containers to improve reproduc-
ibility in software engineering research. In: Proceedings of the 38th 
international conference on software engineering companion—ICSE 
’16. ACM Press, New York, pp 906–907

	236.	 Silver A (2017) Software simplified. Nature 546(7656):173–174. https​://
doi.org/10.1038/54617​3a

	237.	 Kurtzer GM, Sochat V, Bauer MW (2017) Singularity: Scientific contain-
ers for mobility of compute. PLoS ONE 12(5):0177459. https​://doi.
org/10.1371/journ​al.pone.01774​59

	238.	 Gomes J, Campos I, Bagnaschi E, David M, Alves L, Martins J, Pina J, 
Lopez-Garcia A, Orviz P (2017) Enabling rootless linux containers in 
multi-user environments: the udocker tool. Comput Phys Commun 
232:84–97. https​://doi.org/10.1016/j.cpc.2018.05.021

	239.	 Warr WA (2012) Scientific workflow systems: pipeline pilot and knime. 
J Comput Aided Mol Des 26(7):801–804. https​://doi.org/10.1007/s1082​
2-012-9577-7

	240.	 Suhartanto H, Pasaribu AP, Siddiq MF, Fadhila MI, Hilman MH, Yanuar A 
(2017) A preliminary study on shifting from virtual machine to docker 
container for insilico drug discovery in the cloud. Int J Technol 8(4):611. 
https​://doi.org/10.14716​/ijtec​h.v8i4.9478

	241.	 Fong J (2019) How GlaxoSmithKline is Accelerating Science with 
Docker Enterprise Edition. https​://blog.docke​r.com/2017/10/how-gsk-
is-accel​erati​ng-scien​ce-with-docke​ree/. Accessed 9 Jan 2019

	242.	 Altae-Tran H, Ramsundar B, Pappu AS, Pande V (2017) Low data drug 
discovery with one-shot learning. ACS Cent Sci 3(4):283–293. https​://
doi.org/10.1021/acsce​ntsci​.6b003​67

	243.	 OpenRiskNet (2019) Open e-infrastructure to support data sharing, 
knowledge integration and in silico analysis and modelling in predic-
tive toxicology and risk assessment. http://www.openr​iskne​t.org/. 
Accessed 9 Jan 2019

	244.	 Belmann P, Dröge J, Bremges A, McHardy AC, Sczyrba A, Barton MD 
(2015) Bioboxes: standardised containers for interchangeable bioin-
formatics software. GigaScience 4:47. https​://doi.org/10.1186/s1374​
2-015-0087-0

	245.	 Li W, Kanso A (2015) Comparing containers versus virtual machines 
for achieving high availability. In: 2015 IEEE international conference 
on cloud engineering. IEEE, New Jersey, pp 353–358. https​://doi.
org/10.1109/IC2E.2015.79

	246.	 Spjuth O, Willighagen EL, Guha R, Eklund M, Wikberg JE (2010) Towards 
interoperable and reproducible QSAR analyses: exchange of datasets. J 
Cheminform 2(1):5. https​://doi.org/10.1186/1758-2946-2-5

	247.	 Ruusmann V, Sild S, Maran U (2014) QSAR databank—an approach for 
the digital organization and archiving of QSAR model information. J 
Cheminform 6:25. https​://doi.org/10.1186/1758-2946-6-25

	248.	 Ruusmann V, Sild S, Maran U (2015) QSAR databank repository: open 
and linked qualitative and quantitative structure-activity relationship 

models. J Cheminform 7(1):32. https​://doi.org/10.1186/s1332​
1-015-0082-6

	249.	 Joint Research Centre, The European’s Commission’s science and 
knowledge service (2019) (Q)SAR Model Reporting Format Database. 
https​://qsard​b.jrc.ec.europ​a.eu/qmrf/. Accessed 1 Nov 2019

	250.	 Hastings J, Jeliazkova N, Owen G, Tsiliki G, Munteanu CR, Steinbeck C, 
Willighagen E (2015) eNanoMapper: harnessing ontologies to enable 
data integration for nanomaterial risk assessment. J Biomed Demant 
6(1):10

	251.	 Guazzelli A, Zeller M, Lin W-C, Williams G et al (2009) PMML: an open 
standard for sharing models. R J 1(1):60–65

	252.	 Center for Computational Science Research, Inc. (2019) Data Mining 
Group. http://dmg.org/. Accessed 1 Nov 2019

	253.	 Fillbrunn A (2019) PMML integration in KNIME. https​://www.knime​
.com/blog/pmml-integ​ratio​n-in-knime​/. Accessed 1 Nov 2019

	254.	 ONNX Project Contributors (2019) Open Neural Network Exchange 
Format: The open ecosystem for interchangeable AI models. https​://
onnx.ai/. Accessed 1 Nov 2019

	255.	 Stålring JC, Carlsson LA, Almeida P, Boyer S (2011) AZOrange—high 
performance open source machine learning for QSAR modeling in a 
graphical programming environment. J Cheminform 3:28. https​://doi.
org/10.1186/1758-2946-3-28

	256.	 Dixon SL, Duan J, Smith E, Von Bargen CD, Sherman W, Repasky MP 
(2016) AutoQSAR: an automated machine learning tool for best-
practice quantitative structure-activity relationship modeling. Fut Med 
Chem 8(15):1825–1839. https​://doi.org/10.4155/fmc-2016-0093

	257.	 Nantasenamat C, Worachartcheewan A, Jamsak S, Preeyanon L, Shoom-
buatong W, Simeon S, Mandi P, Isarankura-Na-Ayudhya C, Prachayasitti-
kul V (2015) AutoWeka: toward an automated data mining software for 
QSAR and QSPR studies. Methods Mol Biol 1260:119–147. https​://doi.
org/10.1007/978-1-4939-2239-0_8

	258.	 Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) 
The weka data mining software. ACM SIGKDD Explor Newslett 11(1):10. 
https​://doi.org/10.1145/16562​74.16562​78

	259.	 Kausar S, Falcao AO (2018) An automated framework for QSAR 
model building. J Cheminform 10(1):1. https​://doi.org/10.1186/s1332​
1-017-0256-5

	260.	 Dong J, Yao Z-J, Zhu M-F, Wang N-N, Lu B, Chen AF, Lu A-P, Miao H, Zeng 
W-B, Cao D-S (2017) ChemSAR: an online pipelining platform for molec-
ular SAR modeling. J Cheminform 9(1):27. https​://doi.org/10.1186/
s1332​1-017-0215-1

	261.	 Tsiliki G, Munteanu CR, Seoane JA, Fernandez-Lozano C, Sarimveis H, 
Willighagen EL (2015) Rregrs: an r package for computer-aided model 
selection with multiple regression models. J Cheminform 7:46. https​://
doi.org/10.1186/s1332​1-015-0094-2

	262.	 Murrell DS, Cortes-Ciriano I, van Westen GJP, Stott IP, Bender A, Mal-
liavin TE, Glen RC (2015) Chemically aware model builder (camb): an r 
package for property and bioactivity modelling of small molecules. J 
Cheminform 7:45. https​://doi.org/10.1186/s1332​1-015-0086-2

	263.	 Shamsara J (2017) Ezqsar: an R package for developing QSAR models 
directly from structures. Open Med Chem J 11:212–221. https​://doi.
org/10.2174/18741​04501​71101​0212

	264.	 Nantasenamat C (2020) Best practices for constructing reproducible 
QSAR models. In: Roy K (ed) Ecotoxicological QSARs. Humana Press, 
New Jersey

	265.	 Rule A, Birmingham A, Zuniga C, Altintas I, Huang S-C, Knight R, Moshiri 
N, Nguyen MH, Rosenthal SB, Pérez F, Rose PW (2019) Ten simple rules 
for writing and sharing computational analyses in jupyter notebooks. 
PLoS Comput Biol 15(7):1007007

	266.	 Landrum G (2019) RDKit tutorials. Available online: https​://githu​b.com/
gregl​andru​m/. Accessed 1 Nov 2019

	267.	 RDKit (2019) RDKit: Open-Source Cheminformatics Software. https​://
www.rdkit​.org/. Accessed 1 Nov 2019

	268.	 RDKit GitHub (2019) RDKit. https​://githu​b.com/rdkit​/rdkit​-tutor​ials/. 
Accessed 1 Nov 2019

	269.	 OpenEye Scientific Software, Inc (2019) OpenEye Python Cookbook. 
https​://docs.eyeso​pen.com/toolk​its/cookb​ook/pytho​n/. Accessed 1 
Nov 2019

	270.	 Informatics Matters Ltd (2019) Squonk Computational Notebook. https​
://squon​k.it/. Accessed 1 Nov 2019

https://doi.org/10.2174/1568026613666131127125858
https://doi.org/10.1093/bioinformatics/btt666
https://doi.org/10.1093/bioinformatics/btt666
https://doi.org/10.1145/1996023.1996028
https://doi.org/10.1186/s13321-017-0204-4
http://www.pharmbio.org/
http://www.pharmbio.org/
https://doi.org/10.4137/BBI.S28636
https://doi.org/10.4137/BBI.S28636
https://doi.org/10.1038/546173a
https://doi.org/10.1038/546173a
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1016/j.cpc.2018.05.021
https://doi.org/10.1007/s10822-012-9577-7
https://doi.org/10.1007/s10822-012-9577-7
https://doi.org/10.14716/ijtech.v8i4.9478
https://blog.docker.com/2017/10/how-gsk-is-accelerating-science-with-dockeree/
https://blog.docker.com/2017/10/how-gsk-is-accelerating-science-with-dockeree/
https://doi.org/10.1021/acscentsci.6b00367
https://doi.org/10.1021/acscentsci.6b00367
http://www.openrisknet.org/
https://doi.org/10.1186/s13742-015-0087-0
https://doi.org/10.1186/s13742-015-0087-0
https://doi.org/10.1109/IC2E.2015.79
https://doi.org/10.1109/IC2E.2015.79
https://doi.org/10.1186/1758-2946-2-5
https://doi.org/10.1186/1758-2946-6-25
https://doi.org/10.1186/s13321-015-0082-6
https://doi.org/10.1186/s13321-015-0082-6
https://qsardb.jrc.ec.europa.eu/qmrf/
http://dmg.org/
https://www.knime.com/blog/pmml-integration-in-knime/
https://www.knime.com/blog/pmml-integration-in-knime/
https://onnx.ai/
https://onnx.ai/
https://doi.org/10.1186/1758-2946-3-28
https://doi.org/10.1186/1758-2946-3-28
https://doi.org/10.4155/fmc-2016-0093
https://doi.org/10.1007/978-1-4939-2239-0_8
https://doi.org/10.1007/978-1-4939-2239-0_8
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1186/s13321-017-0256-5
https://doi.org/10.1186/s13321-017-0256-5
https://doi.org/10.1186/s13321-017-0215-1
https://doi.org/10.1186/s13321-017-0215-1
https://doi.org/10.1186/s13321-015-0094-2
https://doi.org/10.1186/s13321-015-0094-2
https://doi.org/10.1186/s13321-015-0086-2
https://doi.org/10.2174/1874104501711010212
https://doi.org/10.2174/1874104501711010212
https://github.com/greglandrum/
https://github.com/greglandrum/
https://www.rdkit.org/
https://www.rdkit.org/
https://github.com/rdkit/rdkit-tutorials/
https://docs.eyesopen.com/toolkits/cookbook/python/
https://squonk.it/
https://squonk.it/


Page 30 of 30Schaduangrat et al. J Cheminform            (2020) 12:9 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	271.	 CDK (2019) Chemistry Development Kit: Open Source modular Java 
libraries for Cheminformatics. https​://cdk.githu​b.io/. Accessed 1 Nov 
2019

	272.	 Jansen JM, Cornell W, Tseng YJ, Amaro RE (2012) Teach-Discover-Treat 
(TDT): collaborative computational drug discovery for neglected 
diseases. J Mol Graph Model 38:360–362. https​://doi.org/10.1016/j.
jmgm.2012.07.007

	273.	 Riniker S, Landrum GA, Montanari F, Villalba SD, Maier J, Jansen JM, 
Walters WP, Shelat AA (2017) Virtual-screening workflow tutorials and 
prospective results from the Teach-Discover-Treat competition 2014 
against malaria. F1000 Res 6:1136. https​://doi.org/10.12688​/f1000​resea​
rch.11905​.2

	274.	 Riniker S, Landrum GA, Montanari F, Villalba SD, Maier J, Jansen, JM, 
Walters WP, Shelat AA (2019) Tutorial for the Teach-Discover-Treat (TDT) 
competition 2014-Challenge 1: anti-malaria hit finding using classifier-
fusion boosted predictive models. https​://githu​b.com/srini​ker/TDT-
tutor​ial-2014/. Accessed 1 Nov 2019

	275.	 Sydow D, Morger A, Driller M, Volkamer A (2019) TeachOpenCADD: a 
teaching platform for computer-aided drug design using open source 
packages and data. J Cheminform 11:29. https​://doi.org/10.1186/s1332​
1-019-0351-x

	276.	 Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, 
Kelley K, Hamrick J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing 
C (2016) development team, J.: Jupyter notebooks - a publishing format 
for reproducible computational workflows. In: Loizides F, Scmidt B (eds) 
Positioning and power in Academic Publishing: players, agents and 
agendas. IOS Press, Amsterdam, pp 87–90. https​://eprin​ts.soton​.ac.
uk/40391​3/

	277.	 Grünberg R, Nilges M, Leckner J (2007) Biskit-a software platform for 
structural bioinformatics. Bioinformatics 23(6):769–770. https​://doi.
org/10.1093/bioin​forma​tics/btl65​5

	278.	 Daniluk P, Wilczyński B, Lesyng B (2015) WeBIAS: a web server for pub-
lishing bioinformatics applications. BMC Res Notes 8:628. https​://doi.
org/10.1186/s1310​4-015-1622-x

	279.	 Osz Á, Pongor LS, Szirmai D, Gyorffy B (2017) A snapshot of 3649 web-
based services published between 1994 and 2017 shows a decrease 
in availability after 2 years. Brief Bioinform. https​://doi.org/10.1093/bib/
bbx15​9

	280.	 RStudio Inc. (2018) Shiny. https​://shiny​.rstud​io.com/
	281.	 Plotly (2019) Dash. https​://plot.ly/produ​cts/dash/. Accessed 9 Jan 2019
	282.	 Plotly (2019) Plotly: Modern analytic apps for the enterprise. https​://

plot.ly/. Accessed 9 Jan 2019
	283.	 Nantasenamat C (2019) Conceptual map of computational drug 

discovery [CC-BY]. https​://doi.org/10.6084/m9.figsh​are.59794​00
	284.	 Synergy Research Group (2019) The leading cloud providers continue 

to run away with the market. https​://www.srgre​searc​h.com/artic​les/
leadi​ng-cloud​-provi​ders-conti​nue-run-away-marke​t/. Accessed 9 Jan 
2019

	285.	 Dong J, Yao Z-J, Wen M, Zhu M-F, Wang N-N, Miao H-Y, Lu A-P, Zeng W-B, 
Cao D-S (2016) Biotriangle: a web-accessible platform for generating 
various molecular representations for chemicals, proteins, dnas/rnas 
and their interactions. J Cheminform 8:34. https​://doi.org/10.1186/
s1332​1-016-0146-2

	286.	 Dong J, Cao D-S, Miao H-Y, Liu S, Deng B-C, Yun Y-H, Wang N-N, Lu A-P, 
Zeng W-B, Chen AF (2015) Chemdes: an integrated web-based platform 
for molecular descriptor and fingerprint computation. J Cheminform 
7:60. https​://doi.org/10.1186/s1332​1-015-0109-z

	287.	 Walker T, Grulke CM, Pozefsky D, Tropsha A (2010) Chembench: a chem-
informatics workbench. Bioinformatics 26(23):3000–3001. https​://doi.
org/10.1093/bioin​forma​tics/btq55​6

	288.	 Sushko I, Novotarskyi S, Körner R, Pandey AK, Rupp M, Teetz W, Brand-
maier S, Abdelaziz A, Prokopenko VV, Tanchuk VY et al (2011) Online 
chemical modeling environment (OCHEM): web platform for data 
storage, model development and publishing of chemical information. 
J Comput Aided Mol Des 25(6):533–554. https​://doi.org/10.1007/s1082​
2-011-9440-2

	289.	 González-Medina M, Medina-Franco JL (2017) Platform for unified 
molecular analysis: Puma. J Chem Inform Model 57(8):1735–1740. https​
://doi.org/10.1021/acs.jcim.7b002​53

	290.	 van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, 
Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin AMJJ (2016) 
The haddock2.2 web server: user-friendly integrative modeling of 
biomolecular complexes. J Mol Biol 428(4):720–725. https​://doi.
org/10.1016/j.jmb.2015.09.014

	291.	 Camps J, Carrillo O, Emperador A, Orellana L, Hospital A, Rueda M, Cicin-
Sain D, D’Abramo M, Gelpí JL, Orozco M (2009) FlexServ: an integrated 
tool for the analysis of protein flexibility. Bioinformatics 25(13):1709–
1710. https​://doi.org/10.1093/bioin​forma​tics/btp30​4

	292.	 Hospital A, Andrio P, Fenollosa C, Cicin-Sain D, Orozco M, Gelpí JL (2012) 
MDWeb and MDMoby: an integrated web-based platform for molecu-
lar dynamics simulations. Bioinformatics 28(9):1278–1279. https​://doi.
org/10.1093/bioin​forma​tics/bts13​9

	293.	 Stierand K, Maass PC, Rarey M (2006) Molecular complexes at a glance: 
automated generation of two-dimensional complex diagrams. Bioinfor-
matics 22(14):1710–1716. https​://doi.org/10.1093/bioin​forma​tics/btl15​
0

	294.	 Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer 
F, Gallo Cassarino T, Bertoni M, Bordoli L, Torsten S (2014) Swiss-model: 
modelling protein tertiary and quaternary structure using evolutionary 
information. Nucleic Acids Res 42(Web Server issue):252–8. https​://doi.
org/10.1093/nar/gku34​0

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://cdk.github.io/
https://doi.org/10.1016/j.jmgm.2012.07.007
https://doi.org/10.1016/j.jmgm.2012.07.007
https://doi.org/10.12688/f1000research.11905.2
https://doi.org/10.12688/f1000research.11905.2
https://github.com/sriniker/TDT-tutorial-2014/
https://github.com/sriniker/TDT-tutorial-2014/
https://doi.org/10.1186/s13321-019-0351-x
https://doi.org/10.1186/s13321-019-0351-x
https://eprints.soton.ac.uk/403913/
https://eprints.soton.ac.uk/403913/
https://doi.org/10.1093/bioinformatics/btl655
https://doi.org/10.1093/bioinformatics/btl655
https://doi.org/10.1186/s13104-015-1622-x
https://doi.org/10.1186/s13104-015-1622-x
https://doi.org/10.1093/bib/bbx159
https://doi.org/10.1093/bib/bbx159
https://shiny.rstudio.com/
https://plot.ly/products/dash/
https://plot.ly/
https://plot.ly/
https://doi.org/10.6084/m9.figshare.5979400
https://www.srgresearch.com/articles/leading-cloud-providers-continue-run-away-market/
https://www.srgresearch.com/articles/leading-cloud-providers-continue-run-away-market/
https://doi.org/10.1186/s13321-016-0146-2
https://doi.org/10.1186/s13321-016-0146-2
https://doi.org/10.1186/s13321-015-0109-z
https://doi.org/10.1093/bioinformatics/btq556
https://doi.org/10.1093/bioinformatics/btq556
https://doi.org/10.1007/s10822-011-9440-2
https://doi.org/10.1007/s10822-011-9440-2
https://doi.org/10.1021/acs.jcim.7b00253
https://doi.org/10.1021/acs.jcim.7b00253
https://doi.org/10.1016/j.jmb.2015.09.014
https://doi.org/10.1016/j.jmb.2015.09.014
https://doi.org/10.1093/bioinformatics/btp304
https://doi.org/10.1093/bioinformatics/bts139
https://doi.org/10.1093/bioinformatics/bts139
https://doi.org/10.1093/bioinformatics/btl150
https://doi.org/10.1093/bioinformatics/btl150
https://doi.org/10.1093/nar/gku340
https://doi.org/10.1093/nar/gku340

	Towards reproducible computational drug discovery
	Abstract 
	Introduction
	Research documentation
	Science of reproducible research
	Reproducibility crisis
	Reproducibility versus replicability
	Reusability versus reliability
	Open Science
	Computational reproducibility ecosystem

	Model development in computational drug discovery
	Chemical and biological data repositories
	Ligand-based approaches
	Structure-based approaches
	Systems-based approaches

	Computational issues on model development and deployment
	Scientific workflow management systems
	Large-scale integrative computational infrastructure
	High performance computing (HPC) clusters
	Cloud computing and virtualization
	Virtual machines
	Containers
	Model deployment


	Use case scenarios for streamlining the computational drug discovery protocol
	Workflows for computational drug discovery
	Web servers for computational drug discovery

	Conclusion
	Acknowledgements
	References




