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methods in chemogenomics for the prediction 
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Abstract 

Chemogenomics, also called proteochemometrics, covers a range of computational methods that can be used to 
predict protein–ligand interactions at large scales in the protein and chemical spaces. They differ from more classi-
cal ligand-based methods (also called QSAR) that predict ligands for a given protein receptor. In the context of drug 
discovery process, chemogenomics allows to tackle the question of predicting off-target proteins for drug candidates, 
one of the main causes of undesirable side-effects and failure within drugs development processes. The present study 
compares shallow and deep machine-learning approaches for chemogenomics, and explores data augmentation 
techniques for deep learning algorithms in chemogenomics. Shallow machine-learning algorithms rely on expert-
based chemical and protein descriptors, while recent developments in deep learning algorithms enable to learn 
abstract numerical representations of molecular graphs and protein sequences, in order to optimise the performance 
of the prediction task. We first propose a formulation of chemogenomics with deep learning, called the chemog-
enomic neural network (CN), as a feed-forward neural network taking as input the combination of molecule and 
protein representations learnt by molecular graph and protein sequence encoders. We show that, on large datasets, 
the deep learning CN model outperforms state-of-the-art shallow methods, and competes with deep methods with 
expert-based descriptors. However, on small datasets, shallow methods present better prediction performance than 
deep learning methods. Then, we evaluate data augmentation techniques, namely multi-view and transfer learn-
ing, to improve the prediction performance of the chemogenomic neural network. We conclude that a promising 
research direction is to integrate heterogeneous sources of data such as auxiliary tasks for which large datasets are 
available, or independently, multiple molecule and protein attribute views.
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Introduction
Interest of chemogenomics in drug discovery
The current paradigm in rationalised drug design usu-
ally associates a disease to one or several protein targets, 
called therapeutic targets, belonging to biological path-
ways that are involved in the disease development. The 
goal of the drug discovery process is then to identify a 

drug molecule that binds to the protein target and alters 
disease evolution.

However, the drug discovery process has limited suc-
cess, and only a few tens of new drugs reach the market 
every year. Indeed, most of the hits identified by high-
throughput screening (HTS) fail to become approved 
drugs because of unwanted side effects and toxicity. This 
in part results from unexpected interactions with so 
called “off-target” proteins due to drugs lack of specificity.

However, it is impossible to conduct bio-assays at 
the human proteome scale to discard molecules with 
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unacceptable off-targets [1, 2], and chemoinformatics [3] 
algorithms provide interesting in silico screening meth-
ods. Chemogenomics is a generalisation of Quantitative 
Structure-Activity Relationship (QSAR) methods  [4]. 
QSAR methods can predict interactions for a given pro-
tein (or few, in the case of multi-task QSAR), while chem-
ogenomic models are trained to simultaneously predict 
interactions for several proteins [5], with the underlying 
idea that the prediction of a drug–target interaction may 
benefit from interactions known between other targets 
and other molecules. Chemogenomics enables to predict 
drugs unexpected “off-targets”, and guide experiments 
to only test interactions predicted with high probability 
scores. Note that some authors use the word “proteo-
chemometrics” as a synonym for chemogenomics, and 
various studies report the diversity of applications of pro-
teochemometrics [6]. The word “proteochemometrics” is 
often preferred in papers that study the impact of protein 
and molecule descriptors on prediction performances [7, 
8]. In the present paper, we tackle the question of pre-
dicting drugs specificity at large scale in the space of 
proteins, and therefore, the word “chemogenomics” 
appeared more adequate. We explore chemogenom-
ics with deep learning approaches, including transfer 
learning strategies, and compare their prediction per-
formances to those of state-of-the-art shallow methods. 
We formulate the problem as a Drug–Target Interaction 
(DTI) prediction task, in terms of a binary classification 
of (protein,molecule) pairs that interact or not.

Outline and contributions
“Reference shallow methods in machine-learning for 
chemogenomics” section recalls key reference shallow 
machine-learning methods for chemogenomics. In “Pro-
posed chemogenomic neural network” section, we pre-
sent a formal scheme, named the chemogenomic neural 
network (CN), for molecule and protein representation 
learning in the context deep learning for chemogenom-
ics. “Related works” section shortly reviews related 
works in chemogenomics and QSAR with deep learning 
approaches. It is followed by the “Materials and methods” 
section.

Then, in the “Results” section, we first compare the 
prediction performances of state-of-the-art shallow 
and deep machine-learning methods, which was never 
discussed in previous chemogenomics studies. We 
show that, on small datasets, the more simple and less 
computationally demanding shallow methods perform 
better than deep learning methods. On large datasets, 
the proposed chemogenomic neural network (CN) with 
representation learning competes with state-of-the-art 

shallow and deep methods that use expert-based 
descriptors, but is not ultimately superior. These con-
clusions differ from those of previous works which con-
sidered specific datasets and compared deep learning 
approaches with baseline (i.e. not state-of-the-art) shal-
low methods.

Furthermore, we consider data augmentation tech-
niques, namely multi-view and transfer learning. In 
particular, we tested the interest of combining expert-
based and learnt features. We also tested various imple-
mentations of transfer learning using additional larger 
datasets to pre-train the encoders, before their use 
in the chemogenomic task of interest. We show that 
multi-view and transfer learning can improve predic-
tion performance of deep learning methods on small 
datasets, although not reaching the performances of 
shallow methods. However, for large datasets, we also 
show that a less sophisticated model in which the deep 
neural network simply uses expert-based molecule and 
protein descriptors (i.e. the descriptors that are not 
learnt), outperforms state-of-the-art shallow models.

We finally present a “Discussion and conclusion” sec-
tion about the proposed methods for chemogenomics 
with deep learning.

Reference shallow methods in machine‑learning 
for chemogenomics
Various chemogenomics methods have been proposed 
in the last decade [9–23]. They differ by (i) the descrip-
tors used to encode proteins and ligands (ii) how simi-
larities are measured between these objects, (iii) the 
machine-learning algorithm that is used to learn the 
model and make the predictions.

Jacob and Vert  [5] used the Kronecker product of 
protein and ligand kernels to define the kernel associ-
ated with the chemogenomic space, i.e. the space of 
(protein,molecule) pairs. This approach has been suc-
cessfully applied to DTI prediction [10, 24, 25]. In this 
paper, this method called “kronSVM” is used it as refer-
ence to benchmark the considered deep learning algo-
rithms for chemogenomics.

As another reference shallow model, we also used 
Matrix factorisation (MF) approaches that decom-
pose the (protein, molecule) interaction matrix into 
the product of two matrices of lower ranks that oper-
ate in the two corresponding latent spaces of proteins 
and molecules  [22, 26]. More precisely, we used the 
NRLMF  method developed by Liu et  al  [23], because 
it proved to outperform other shallow state-of-the-art 
methods on various datasets [9, 18–20, 22].
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Proposed chemogenomic neural network
Overall scheme for the chemogenomic neural network
Our general scheme for chemogenomics with deep learn-
ing is represented in Fig. 1. It contains four main build-
ing blocks : (1) a molecule encoder that learns abstract 
descriptors for molecules based on their structure (2) a 
protein encoder that learns abstract descriptors from 
their amino acids sequence, (3) a Comb block, i.e. an 
operation or a neural network module that combines 
molecule and protein descriptors to build a pairwise 
latent representation for the (molecule, protein) pair, and 
(4) the MLPpair (for Multi Layer Perceptron on pairs, also 
called feed-forward neural network, FNN) that predicts 
if the (molecule,protein) pairs interact.

Any protein sequence and molecular graph encod-
ers can be considered, and the four building blocks are 
detailed in the next sections.

Molecular graph encoder
Classically, molecules are represented by a one dimen-
sional representation, such as the SMILES  [27] repre-
sentation, which can be encoded by recurrent neural 
networks.

Molecules can also be represented in 2D by their 
molecular graphs G = (V , E) , where V is the set of ver-
tices (or nodes), and E the set of edges. Nodes are 
attributed with atom properties (like atom type, or phys-
icochemical properties), and edges are attributed with 
bond properties (like bond type, or topological proper-
ties). Such undirected graphs can be encoded by Graph 
Neural Networks (GNN). Approaches based on recurrent 
neural networks processing SMILES proved to be com-
petitive with GNN processing the molecular graph  [28, 
29]. However, in the present study, we used GNNs 
because they offer a wider implementation versatility and 
larger room for improvements.

Each node i and each edge (i,  j) respectively has input 
attribute vectors xi and xij (in our case, descriptors of 
atoms and bonds). We note hi and hij the node and edge 
representations learnt by the molecule encoder. N (i) 
refers to the neighbouring nodes of node i, which can be 
the one-hop neighbourhood (i.e. the nodes reached by 
paths of length 1, which we used in practice), and L rep-
resents the total number of neural layers in the GNN.

Alg. 1 presents the general algorithm we used for GNN, 
which is inspired from Hamilton et al. [30, 31].

Algorithm 1 Graph neural network (GNN)
Require: (i) Graph G(V, E); (ii) input features xv ,∀v ∈ V; (iii) depth K; (iv) learnable and differ-

entiable aggregating functions AGGREGATE
(l)
graph and AGGREGATE

(l)
node, ∀l ∈ 1, . . . , L; (v)

neighbourhood function N : v → 2V .
Goal: compute a graph-level representation: m.
h0
i ← xi, ∀i ∈ V.

for l = 1 . . . L do
for i ∈ V do

h(l)
i ← AGGREGATE

(l)
node({h

(l−1)
i } ∪ {h(l−1)

j , ∀j ∈ N (i)})
end for
m(l) ← AGGREGATE

(l)
graph({h

(l)
i , ∀v ∈ V })

end for
m ← COMBINEgraph({m(l), ∀l})

In more explicit words, at each layer l, all nodes aggre-
gate information from their local neighbours in rep-
resentation vectors h(l)i  , which are aggregated in an 
m

(l) representation of the molecule. At each iteration, 
nodes gain information from further nodes. These intui-
tions are illustrated in Fig.  2. Finally, a global represen-
tation m of the molecule is built by combining the m(l) 
representations.

Various GNN methods can be considered, depending 
on the aggregation functions chosen at the nodes and 
graph levels, and on the COMBINEgraph function that 
combines the m(l) representations.

The flexibility and representation power of the GNN 
formulation in Alg. 1 rely on the aggregation functions. 
They update node-level representations based on the 
neighbourhood, and compute a graph-level representa-
tions (molecule representations, in our case) based on all 
nodes representations.

Fig. 1  The chemogenomic neural network (CN)
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We will call the “minimal” formulation of GNN, the 
intuitive and simple encoding of the graph in which the 
AGGREGATE

(l)
graph function is defined by the sum of all 

nodes representations, at each layer [28, 29, 32–35]:

This sum function captures in a single value, for each 
node feature, its distribution over all nodes.

We define the “minimal” AGGREGATE(l+1)

node  function, 
the function that calculates the node representation 
h
(l+1)
i  at layer l + 1 based on the representations of its 

neighbourhood at layer l, after they are passed through a 
shared hidden layer. This function takes the form of Eq. 2:

where, σ refers to the sigmoid function, N (i) to the one-
hop neighbourhood of node i, W(l)

0
 and W(l)

1
 are learnable 

weight matrices, and αij are learnable coefficients.
Finally, to provide a graph-level embedding m of the 

molecule, our “minimal” COMBINEgraph function is sim-
ply the last layer representation m(L) , as in most studies.

The proposed chemogenomic neural network shown in 
Fig.  1 uses the minimal versions defined above for the 

(1)m
(l)

=
∑

i∈V

h
(l)
i

(2)h
(l+1)
i = σ(W

(l)
0

· h
(l)
i +

∑

j∈N (i)

αijW
(l)
1

· h
(l)
j )

AGGREGATE
(l)
node , AGGREGATE

(l)
graph , and 

COMBINEgraph functions. Other more sophisticated ver-
sions of these functions have been proposed in other 
fields of graph representation learning. Interested readers 
will find details about these functions in  [31, 31, 36, 37] 
for AGGREGATE

(l)
graph functions, in   [38–40] for 

AGGREGATE
(l)
node functions, and in   [41] for 

COMBINEgraph functions. We extensively tested these 
alternatives, but none of them improved the prediction 
performance of the proposed chemogenomic neural net-
work (see Additional file 1), probably because molecular 
graphs are too small to benefit from these sophisticated 
embeddings that will not be further consider.

Protein sequence encoder
Encoding a protein with a neural network encoder 
requires to define input attributes for amino acids such as 
the “one-hot” encoding, where amino acids are encoded 
by a binary vector containing a single one and 19 zeros 
(each bit corresponds to one of the 20 natural amino 
acids).

Since proteins are sequences of amino acids, their repre-
sentations can be learnt by convolutional neural networks 
(CNN) and recurrent neural networks, in particular Long 
Short-Term Memory cells (LSTM) and bi-directional 
LSTM (bi-LSTM) as used in various prediction prob-
lems  [42–47]. We tested CNN and bi-LSTM networks, 
but we observed that the bi-LSTM networks did not 
improve performance of DTI prediction (see Additional 
file 1). Therefore, we used a CNN to encode proteins.

Combining protein and molecule encodings
In Fig. 1, the Comb block of the CN network that com-
bines the learnt representations for proteins and mol-
ecules is simply the intuitive concatenation function. We 
investigated more sophisticated Comb blocks, but they 
did not improve the performance (see Additional file 1).

The multi‑layer perceptron MLPpair

The chemogenomic neural network in Fig.  1 performs 
the DTI prediction task based on a final multi-layer per-
ceptron (MLP), the most common deep neural network 
architecture. It consists of stacked fully connected lay-
ers, where each neuron at layer l takes as input all neu-
ron outputs from layer l − 1 and thus, directs its output 
to all neurons at layer l + 1 . The data are subjected to 
non-linear transformations across several layers, and 
intermediate layers can be viewed as hidden abstract rep-
resentations of the original data. The MLPpair network 
can be viewed as a representation learning model, since it 
learns the best representations for the considered predic-
tion task.

Fig. 2  Sketch of the Graph neural network iterative process. (a) The 
AGGREGATE

(l)
node function updates node representation vectors by 

aggregating information coming from itself and its neighbours. (b) 
As the process iterates, nodes receive information from further nodes 
in the graph. (c) The AGGREGATE(l)graph function builds a graph-level 
representation vector by aggregating information from all nodes. (d) 
A graph-level representation is learned at each iteration
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Overall, the chemogenomic neural network used 
throughout this paper is built with the minimal GNN 
defined above to encode molecules, the CNN to encode 
proteins, the concatenation Comb function, and a final 
MLPpair for the prediction task.

However, note that MLPpair can also directly use the 
concatenation of molecule and protein expert-driven 
representations as inputs, skipping the protein and mol-
ecule encoders, and the Comb block. This lead to state-
of-the-art performances in many chemoinformatics 
applications, but was not tested yet in chemogenomics. 
Therefore, we also tested this approach, called FNN, as 
detailed in "Materials and methods".

Related works
Direct predecessors of the proposed chemogenomic neu-
ral network are introduced below.

Ozturk et  al.  [48] used the following architecture for 
the four blocks of the chemogenomic neural network: (1) 
a three layers CNN on SMILES representations to encode 
molecules, (2) three layers CNN on protein sequences to 
encode proteins, (3) concatenation to combine the learnt 
molecule and protein encodings (4) a three layers feed-
forward neural network to predict the affinity of mol-
ecules for proteins.

Their study was restricted to the kinases protein family, 
and therefore, was far from covering the protein diver-
sity required to predict drugs unexpected targets. On 
this focused dataset, they obtained better or similar per-
formance compared to Simboost  [49] (a gradient boost-
ing method) and KronRLS  [12] (analogue of KronSVM 
but with kernelised Recursive Least Square) in terms of 
Mean Square Error (MSE). When “binarising” the out-
puts based on a threshold in pKd value to distinguish 
actives from inactives, their method performed slightly 
better than the considered shallow methods, in terms of 
AUPR. However, they did not compare to the simpler 
architecture of FNN with expert-driven descriptors for 
molecules and proteins as inputs, or to state-of-the-art 
shallow methods such as NRLMF.

In a more sophisticated approach, Tsubaki et  al.  [50] 
considered the following blocks: (1) GNN modules to 
encode molecules, in which the molecular graph-level 
representation m(l) is learnt with an aggregation function 
AGGREGATE

(l)
graph corresponding to the sum over the 

atom level representations, as in the “minimal” GNN 
defined above. (2) Protein encoding hprot is performed 
with a CNN on amino acid representations which learns 
latent representations at the amino acid-level h(aa)i . (3) 
The Comb module uses an attention mechanism that 
affects weights to learnt representations of each amino 
acid in the sequence. This allows interpretation of 

predictions based on which amino acids are involved in 
ligand binding. This deep learning method or a reference 
SVM-based method with a fingerprint-RBF kernel (not 
known to be state-of-the-art) was found to perform bet-
ter, depending on settings, and on the considered metrics 
(precision, recall, or ROCAUC).

Although this study paved the way for deep learning 
in chemogenomics, going one step further than Ozturk 
et  al.  [48] in terms of deep learning architecture and 
technology, it suffers from several lacks in the discus-
sion. First, the authors did not compare the prediction 
performances of their method to those obtained without 
the attention mechanism, which limits evaluation of their 
approach. Importantly, they did not provide a clear com-
parison with state-of-the-art shallow methods, and as 
in [50], they did not either compare to a simple FNN with 
expert-based descriptors as inputs, which often leads to 
the best prediction performances, as shown in "Results" 
section of the present paper.

Overall, the results of previous works in chemogenom-
ics with deep learning are far from the striking gap in 
performance obtained by deep learning-based models in 
the image or natural language processing fields. They do 
not provide comparison to simpler deep learning meth-
ods, or to state-of-the-art shallow methods. Moreover, 
the datasets considered in these studies are very het-
erogeneous and often, do not cover the protein diversity 
required for drugs specificity prediction.

Deep learning approaches have also been proposed in 
QSAR methods, such as Koutsoukas et al.[51]. They can 
predict ligands for a given protein, or given bio-activity 
for molecules. When a training dataset of known ligands 
is available for a given protein, QSAR methods often dis-
play very good performances. However, these single-task 
methods cannot, as such, address the question of drug 
specificity. Importantly, they are not applicable to the 
orphan settings discussed in the present paper, which are 
key situations in drug specificity prediction problems.

Materials and methods
Datasets
The DrugBank database [52] is widely used as a bio-activ-
ity database. Although much smaller than PubChem [53] 
and ChEMBL  [54], it contains around 17000 curated 
drug–target associations with high-quality standards. 
Therefore, we used the DrugBank database version 5.1.0 
to build two interaction datasets that span proteins over 
the whole druggable proteome. The first dataset, called 
DBHuman, keeps interactions involving human proteins 
and their ligands, whereas the second, called DBEColi, 
keeps interactions involving Escherichia coli proteins and 
their ligands.



Page 6 of 18Playe and Stoven ﻿J Cheminform           (2020) 12:11 

DBEColi is composed of 592 molecules targeting 314 
proteins, and includes 874 interactions. DBHuman is 
composed of 4834 molecules targeting 2561 proteins, 
and includes 13,070 interactions. In both cases, known 
interactions are the positive training pairs, and most tar-
gets and drugs are involved in only one or two known 
interactions.

All other protein–ligand pairs are unlabelled. Most 
of them are expected not to interact, but a small num-
ber may be missing interactions. However, we consid-
ered unlabelled pairs as negative examples, as commonly 
assumed.

We also used a larger dataset derived from the 
ChEMBL database. We recovered all drugs (according to 
the filter defined in ChEMBL) targeting human proteins. 
Drugs had on average many more targets than in the 
DrugBank-based datasets, and we restricted the num-
ber of targets per drug to 40, to keep manageable com-
putational times, leading to around 56,000 interactions 
between about 3700 small molecules and 1700 proteins. 
This dataset is used to evaluate whether the main con-
clusions drawn on the DrugBank-based datasets that we 
studied in more details, may generalise to other datasets.

To provide a source task for transfer learning, we also 
consider a PubChem-based dataset to pre-train the 
molecule encoder on auxiliary tasks. More precisely, 
we used the MolNet dataset collection  [55] (namely, 
the PCBA dataset) to build a large dataset consisting in 
439, 863 molecules and 90 binary classification tasks, i.e. 
PubChem bioassays. For each bioassay, molecules are 
labelled as active, inactive or unknown. When a molecule 
is labelled as unknown for a bioassay because it has not 
been experimentally tested, the prediction error for the 
corresponding task and molecule is set to zero.

Evaluation procedures
We evaluated the performance by 5-fold nested cross-
validation. Although we recorded the ROCAUC [56] and 
AUPR  [57] scores for each test fold, we predominantly 
refer to the AUPR. Indeed, the AUPR score is considered 
as a more significant quality measure than the ROCAUC 
when negative interactions are in fact unknown inter-
actions, as in DTI prediction, and when there are many 
more negative than positive samples in the test set, as in 
all experiments of this paper.

We considered four ways to split the two Drug-
Bank-based datasets for the cross-validation scheme, 
corresponding to different settings. The S1 setting cor-
responds to data split at random, S2 to the orphan pro-
tein case (pairs in one fold only contain proteins absent 
in all other folds), S3 to the orphan ligand case (pairs in 
one fold only contain molecules absent in all other folds), 
and S4 to double orphan (pairs in one fold only contain 

proteins and molecules both absent in all other folds). 
This approach was suggested by Pahikkala et  al.  [58], 
because it allows assessment of performance in various 
real-life situations for chemogenomics in the context of 
drug specificity prediction. Note that the folds of S4 were 
built by intersecting those of S2 and S3 , so that there are 
25 folds in the S4 setting instead of 5.

In addition, we explored various “positive:negative” 
sample ratios in the test set (1:1, 1:2, 1:5 and 1:10).

Reference shallow methods
As reference methods not involving deep learning, 
we considered the kronSVM  [5] and NRLMF  [23] 
approaches introduced in "Reference shallow methods in 
machine-learning forchemogenomics"section, because 
they led to state-of-the-art performances in various stud-
ies and datasets.

For kronSVM, the regularisation hyper-parameter of 
SVM, often called C, was optimised by assessing the per-
formance in a 5-fold nested cross-validation scheme. We 
set the five hyper-parameters of NRLMF to their default 
value, as recommended in the original paper [23].

These two approaches require valid kernels for mol-
ecules and for proteins. For proteins, we used the local 
alignment kernel [59] (LAkernel) that mimics the Smith-
Waterman (SW) score. LAkernel was shown to overtake 
other protein sequence kernels on protein homology 
detection [59], but it also proved relevant for drug virtual 
screening [25].

For molecules, we used the Tanimoto similarity meas-
ure, defined as the ratio between the number of sub-
structures shared by the two molecular graphs over the 
total number of considered substructures. This similarity 
measure is very widely used in chemoinformatics, and it 
is also a valid kernel [60].

We also considered a Random Forest with proteochem-
ometric descriptors, because this method lead to the best 
prediction performance on specific protein families data-
sets. More precisely, we used the implementation of Ran-
dom Forest from scikit-learn [61] and considered 512-bits 
ECFP as molecular descriptors (extracted with the RDKit 
python package), and zscales(3) together with protein 
fingerprints(FP8) as protein descriptors (extracted with 
the R package), as suggested by van Westen et al. [62].

Reference deep‑learning method
As reference deep learning method, we considered a sim-
ple feed-forward neural network (FNN) with concatena-
tion of expert-based numerical feature vectors as inputs 
for proteins and molecules, as mentioned in "Related 
works" section. To derive the expert-based descriptors 
for molecules, we extracted 1021-dimensional struc-
tural Morgan fingerprint vectors (analogues of ECFP4) 
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with the RDKit library to extract the following features, 
based on Coley et  al. work  [35]: “atom identity”, “num-
ber of hydrogens”, “number of heavy neighbours”, “formal 
charge”, “is in ring”, “is aromatic”, “polar surface area”, “par-
tial charge”, “chirality tag”. The chemical bond description 
contains: “bond type”, “is in ring”, “is aromatic”, “is con-
jugated”. For protein expert-based descriptors, we used 
the ProtR package to extract 1920-dimensional feature 
vectors corresponding to 11 protein level feature groups 
including amino acid composition (AAC), dipeptide 
composition (DC), autocorrelation descriptors, “com-
position, transition and distribution” descriptors (CTD), 
quasi-sequence-order descriptors (QSO), pseudo-amino 
acid composition descriptors (Pse-AAC), amphiphilic 
pseudo-amino acid composition descriptors (Am-Pse-
AAC), topological descriptors at atomic level and total 
amino acid properties. Indeed, Ong et  al.  [63] reported 
that combining these descriptors provides the best 
results for the prediction of functional families with sup-
port vector machines.

The FNN comprises seven hyper-parameters: two 
architecture hyper-parameters (number of layers, num-
ber of neurons in each layer), three learning hyper-
parameters (initial learning rate, batch size, learning rate 
decay factor), and two regularisation parameters (drop-
out probability and weight decay). The classical ranges 
of these parameters are given in the following in paren-
thesis. For the architecture hyper-parameters: number of 
layers ([1, 4]), number of neurons per layer ([10, 5000]). 
For learning hyper-parameters: batch size ([1, 100]), ini-
tial learning rate ( [10−5, 10−2] ) and learning rate decay 
factor ([0.8, 0.999]). For regularisation hyper-parameters: 
the probability of dropout ([0.0,  0.9]), and the weight 
decay ( [10−4, 0.1] ). As commonly done for deep neural 
networks, we did not perform a full grid-search to opti-
mise the seven hyper-parameters of the FNNs, because 
this would have required too much computational time. 
More precisely, we used a fixed train/validation/test 
data split. We started by optimising the learning hyper-
parameters. The initial learning rate was optimised first 
(the other two parameters are set at median values in the 
above ranges), followed by the batch size, and the learn-
ing rate decay factor. This lead to an initial learning rate 
of 10−3 , a batch size of 100, and a learning rate decay of 
0.9. The architectures and regularisation parameters were 
optimised together, in such a way that the more the archi-
tecture was complex, the more the tested regularisation 
was strong (in our case, it meant that the regularisation 
parameters were high). Each of these four hyper-param-
eters was varied until the performance reached a plateau, 
where we stopped the search.

The optimised hyper-parameters were finally set to: 
3 for the number of layers, 2000, 1000 and 100 for the 

successive three stacked fully connected layers, 0 (no reg-
ularisation) for the weight decay and dropout probability, 
and 0.9 for the learning rate decay. Overall, we observed 
that once the hyper-parameters reach a relevant value, 
the prediction performance does not vary significantly 
when the hyper-parameters remain in the same order of 
magnitude. Therefore, the above hyper-parameter values 
are good default values for this reference deep learning 
architecture.

The proposed chemogenomic neural network
The chemogenomic neural network introduced in "Pro-
posed chemogenomic neural network" section is repre-
sented in Fig.  1. The encoder for molecules is the 
“minimal” GNN, defined in "Proposed chemogenomic 
neural network" section by the Alg. 1, in which the 
AGGREGATE

(l)
graph is the sum function, AGGREGATE(l)

node 
is defined in Eq. 2, and the COMBINEgraph function used 
to build the molecule representation m is simply the last 
graph-level embedding m(L) . The GNN requires atom 
and bond features as input, which were calculated with 
the RDkit library, as for the reference FNN approach.

The protein sequence encoder is a stacked 1D convolu-
tional neural layers (CNN), with amino acids described 
by their types in a one-hot encoding. The final repre-
sentation learnt for the protein is the sum of the learnt 
amino acid representations resulting from the stacked 
convolutional layers.

Finally, the Comb operation in Fig. 1 is the concatena-
tion of the molecule and protein learnt representations.

Compared to the architecture proposed by Tsubaki 
et  al.  [50], our chemogenomic neural network does not 
use bonds attributes for the molecule, and does not use 
any attention mechanism.

The chemogenomic neural network comprises three 
networks: the final MLPpair that makes the prediction 
(see Fig.  1), and the two protein and molecule encod-
ers. The final MLPpair is formally identical to the FNN 
described in the previous section for the reference deep 
learning method. For the three networks, we optimised 
three types of hyper-parameters (architecture, learn-
ing, and regularisation hyper-parameters) by recording 
the performance on multiple train/validation/test data 
splits. It is computationally out of reach to perform a full 
grid search for all hyper-parameters, and therefore, each 
type of hyper-parameters was optimised separately. In 
the following, the ranges in which the hyper-parameters 
are explored are given in parenthesis. For the three net-
works, the learning hyper-parameters are the batch size 
([1, 100]), initial learning rate ( [10−5, 10−2] ) and learning 
rate decay factor ([0.8,  0.99]). These hyper-parameters 
were optimised first, starting by the initial learning rate 
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(the other two parameters are set at median values in the 
above ranges), followed by the batch size, and the learn-
ing rate decay factor.

The architecture hyper-parameters are the number 
of filters ([10,  1000]) and the number of layers ([2,  5]), 
both for the molecule and protein encoders, the convo-
lutional filter size ([6,  12]) and the convolutional stride 
for the sequence encoder ([2, 6]). For the final MLPpair , 
the architecture parameters are number of layers ([1, 4]), 
number of neurons per layer ([10, 5000]), as mentioned 
in the previous section for the reference FNN method. 
For the three types of networks, the regularisation hyper-
parameters are the probability of dropout ([0., 0.9]) and 
the weight decay ( [10−4, 0.1] ). We set the number of 
epochs to 100, and we also considered early stopping 
such that training stops if the performance (AUPR score) 
on the validation set does not increase in ten successive 
epochs. In practice, training was always stopped early.

Once the learning hyper-parameters were optimised, 
the architecture and the regularisation hyper-parameters 
were optimised together (except the convolutional fil-
ter size and stride of the protein encoder), in such a way 
that the more the architecture was complex, the more 
the tested regularisation was strong. The convolutional 
stride and the convolutional filter size of the protein 
encoder were optimised lastly, since they set the detec-
tion of amino acid motifs without changing the archi-
tecture complexity. Each of these hyper-parameters was 
varied until the performance reached a plateau, where we 
stopped the search.

This finally lead to set the number of filters to 100, the 
number of convolutional layers to 3, the stride to 3, the 
filter size to 8, the weight decay and dropout to 0, batch 
size to 20, the initial learning rate to 10−3 , the learning 
rate decay factor to 0.9, and number of neurons in the 
last prediction layer to 100. We found that performance 

was not sensitive to relatively small variations of hyper-
parameters, which means that a wide range of values for 
the hyper-parameters leads to the best performance. In 
particular, adding a small quantity of dropout (until 0.5) 
leads progressively to a longer training and to a loss of 
training performance, whereas it did not significantly 
improve the performance on the validation data.

Overall, these hyper-parameters values are good 
default values for the proposed chemogenomic neural 
network architecture.

Results
Comparison of the proposed chemogenomic neural 
network to reference methods
We first compared the performance of the chemog-
enomic neural network (CN) to those of state-of-the-
art reference methods, namely kronSVM and NRLMF 
for machine-learning shallow methods, and FNN with 
expert-based descriptors as inputs for deep-learning 
methods, as described in "Materials and methods". All 
performances are reported in Supporting Materials, dis-
played in the format “mean score±score standard devia-
tion”, for various ratios of positive:negative test samples.

Figures  3a,   b,  4a, b display the ROCAUC and AUPR 
performance obtained on the DBEColi and DBHuman 
datasets, for a “positive:negative” test sample ratio set to 
1:5. The AUPR and ROC-AUC scores obtained for other 
ratios are gathered in Additional file 2.

First, we observe that the best performing method 
depends on the dataset and on the setting.

On the small DBEColi dataset (874 interactions), 
ROCAUC scores are very close for all methods, but the 
shallow NRLMF method tends to perform the best over-
all. For the more important AUPR score (as explained 
in "Materials and methods" section), the NRLMF and 
kronSVM shallow methods clearly outperform deep 

Fig. 3  Performances on DBEColi for the S1 (random split), S2 (orphan proteins in test set), S3 (orphan molecules in test set), and S4 (double orphan 
in test set) settings, with a positive:negative samples ratio set to 1:5. For each setting, the order from left to right in which the results are displayed is 
given in the legend
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methods. Among deep learning methods, overall, the 
proposed CN performs better than the FNN reference 
method. Our results show that, on small datasets (a few 
thousand interactions, or less), shallow methods should 
be preferred. NRLMF  appears as a good default method, 
although its performances in the S2 and S4 orphan set-
tings are very close to those of the proposed CN deep 
method, because it is simpler and computationally 
efficient.

On the larger DBHuman dataset (13,070 interac-
tions), overall, the two deep learning methods CN and 
FNN outperform the two shallow methods NRLMF and 
kronSVM, both in terms of ROCAUC and AUPR. This is 
particularly true in the three orphan settings ( S2 , S3 , and 
S4 ) which are important in the context of drug specific-
ity prediction. The proposed CN deep learning approach 
globally performs sightly better than the FNN reference 
deep learning approach in ROCAUC, and similarly in 
AUPR. Overall, for large datasets (in the range of ten 
thousand of interactions, or above), deep learning meth-
ods should be preferred to shallow methods, because they 
perform better on a wide panel of settings. This tendency 
will be confirmed below in the Discussion section, on the 
larger ChEMBL-derived dataset (56,000 interactions).

Globally, the performance reached on the DBHuman 
are 10 points higher than those reached on DBEColi, 
which was expected since there are much more data, i.e. 
more information to train the models, in DBHuman than 
in DBEColi.

Regarding the settings, the best scores are obtained 
for S1 , the worst for S4 , and the scores obtained for S2 
and S3 are intermediate. Indeed, S4 corresponds to the 
double orphan test set, where no pair in the training set 
contains proteins or ligands present in the tested pairs 
to guide the predictions, whereas the models can rely 
on training pairs containing either the same proteins in 

S2 or the same ligands in S3 . The loss of performance 
between the random ( S1 ) and the double orphan ( S4 ) 
settings is about 10 points of ROCAUC and 20 points 
of AUPR. More importantly, the prediction on S4 varies 
more depending on the test folds than in the other set-
tings. This can be understood as a consequence of the 
small size of the test set in the S4 setting (any test fold 
is 1/25th of the total amount of data whereas they rep-
resent 1/5th in the other settings), which might result 
in more heterogeneous test sets. Interestingly, the per-
formance reached by all models is better for S3 than for 
S2 , which suggests that predicting protein targets for 
new molecules is a more difficult task than predicting 
ligands for new proteins, as already observed in previ-
ous studies [25, 58].

Let us conclude by a few remarks. We considered 
(1:1, 1:2, 1:5 and 1:10) “positive:negative” samples ratios 
in the train set. We did not test larger proportions of 
negatives because it would be hardly computationally 
tractable, and it would correspond to strongly imbal-
ance datasets.

The kronSVM and NRLMF shallow methods did not 
benefit from an increasing number of negative samples 
in the train set, whereas deep learning-based meth-
ods strongly did between 1:1 and 1:5. More precisely, 
increasing the number of negative samples in the train-
ing set, up to five times the number of positive samples, 
increased the performance of CN and FNN by about 
10% in AUPR and 2% in ROCAUC for the DBHuman 
dataset, and by 20% in AUPR and 10% in ROCAUC for 
the smaller DBEColi dataset. We also observed that 
CN benefits slightly less than FNN from an increasing 
number of negatives in the training set. The perfor-
mance of CN and FNN did increase between a ratio of 
1:5 and 1:10 only in some cases, meaning that the ben-
efit reaches a plateau.

Fig. 4  Performances on DBHuman for the S1 (random split), S2 (orphan proteins in test set), S3 (orphan molecules in test set), and S4 (double 
orphan in test set) settings, with a positive:negative samples ratio set to 1:5. For each setting, the order from left to right in which the results are 
displayed is given in the legend
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We did not correct the imbalance proportions of 
labels in the training set for deep learning-based 
approaches, because it lead to similar performances, or 
lower by few percent. Surprisingly, we never observed 
an improvement in performance when correcting posi-
tive/negative samples imbalance for deep learning-
based approaches, which we cannot explain easily.

Evaluation of the combination of expert‑based and learnt 
features
We showed that the reference FNN directly trained 
with expert-based protein and molecule features as 
inputs, outperforms the proposed chemogenomic neu-
ral network in some settings. Therefore, we modified the 

architecture represented in Fig.  1, and considered two 
architectures that integrate these expert-based and learnt 
features for proteins and molecules into a final pairwise 
representation, as displayed in Figs 5 and 6. The idea was 
to test whether the proposed CN approach could benefit 
from the two forms of representations.

More precisely, the architecture in Fig.  5 combines 
four types of representations in one step: (i) the molec-
ular graph, (ii) the expert-based molecule features, (iii) 
the protein sequence and (iv) the expert-based protein 
features. For the multi-layer perceptrons MLPfea and 
MLPpair , we explored the hyper-parameter spaces by var-
ying the number of layers (from 1 to 3), the number of 
hidden units (in {10,100,200,1000,2000}) while promot-
ing pyramidal architectures, as motivated in [64], and the 
quantity of dropout (in {0,0.3,0.6,0.9}).

To rule out the possibility of an implementation error, 
we performed two sanity checks. First, we checked that 
we recover the performance obtained by the simple ref-
erence FNN with expert-based features as inputs, when 
we silent the protein sequence and molecular graph 
encoders. Similarly, we checked that we recover the per-
formance obtained with expert-based features by the 
proposed CN method, when silencing the MLPfea and 
MLPpair networks.

The performance reached by the model architecture in 
Fig. 5 is significantly lower than that obtained by the CN 
chemogenomic neural network of Fig. 1, and by the refer-
ence FNN with expert-based features, on the four S1 , S2 , 
S3 , S4 settings of the DBEColi dataset (data not shown). A 
possible explanation is that simultaneous training of the 
MLPfea and MLPpair networks with molecular graph and 
protein sequence encoders is an ill-conditioned non-con-
vex optimisation problem.

To address this issue, we separately pre-trained the 
pairs of neural networks encoding expert-based and 
learnt features, before re-training them together on the 
same training data. More precisely, the final MLPpair net-
work is trained with the GNN and CNN networks alone, 
then with the MLPfea for proteins and molecules alone. 
The pre-trained GNN and CNN, and MLPfea networks 
are finally re-trained together, as in the architecture dis-
played in Fig. 5. The parameter starting values of protein 
and molecule networks are those optimised in the pre-
training steps, whereas the starting values of parameters 
in the MLPpair are randomly initialised. This procedure 
allowed retrieve, but not overtake, the performance 
reached by an FNN with only expert-based representa-
tion as inputs, even when increasing the width and depth 
of MLPpair.

To further explore joint optimisation of neural mod-
ules for expert-based and learnt features extraction, we 
considered the architecture in Fig.  6. It combines the 

Fig. 5  Chemogenomic neural networks combining expert-based 
and learnt features in one step

Fig. 6  Modification of the proposed chemogenomic neural network 
combining expert-based and learnt features
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pairwise expert-based and learnt representations through 
a single relatively small layer. Typically, MLPpair-pair is 
composed of a single hidden layer of 50 neurons. In the 
following, we call this model the CN -feaMLP approach. 
We varied the neural architecture and dropout prob-
ability of MLPfea-pair similarly as for MLPfea , and those of 
MLPraw-pair and MLPpair-pair similarly as for MLPpair in 
the architecture displayed in Fig. 5.

The performances of this network for a single test/
train split are reported in Table  1 at the row named 
CN -feaMLP . Remarkably, this approach outperformed 
the CN chemogenomic neural network on the S1 setting, 
while performing similarly or above on the three others.

To evaluate this approach in more details, we assessed 
its performance on the S1 , S2 , S3 and S4 settings using a 
5-fold nested cross-validation scheme, with a test and 
train “positive:negative” ratio of 1:5 (results of Table  1 
corresponded to a single train/test split). The perfor-
mance on DBEColi and DBHuman are reported in Figs. 7 
and  8, together with those of reference methods and of 
the CN chemogenomic network represented in Fig. 1. For 
the DBEColi dataset, the CN -feaMLP model outperforms 
both the CN and the FNN reference model on S1 and S2 , 
and performs similarly, yet slightly better, on S3 and S4 . 
However, on this small dataset, the performances remain 
lower than those of the NRLMF   shallow method, par-
ticularly on S1 and S3.

On the larger DBHuman dataset, the CN -feaMLP 
model outperforms the CN chemogenomic neural net-
work in the S1 setting, but it does not overtake the 
FNN approach. In the S2 , S3 and S4 orphan settings, the 

CN -feaMLP approach reaches slightly better perfor-
mances than both the CN chemogenomic neural network 
and the reference FNN method. Overall, on this larger 
dataset, the two shallow models, kronSVM and NRLMF, 
still have much lower performances than the deep learn-
ing models, and the proposed CN -feaMLP model dis-
played robust performances that remained among the 
best achieved in the four settings.

We conclude that data augmentation techniques based 
on multi-views of the data improve the prediction perfor-
mance of the deep-learning algorithm CN. For relatively 
large datasets like DBHuman, that are widely available 
today, the CN -feaMLP model is good default method 
that robustly outperforms or competes with reference 
shallow or deep learning methods, over the four consid-
ered settings. We believe that integrating other multiple 
description views of molecules and proteins within the 
same model, is an interesting direction for future devel-
opments. Importantly, the CN chemogenomic network 
provides a versatile architecture to incorporate such 
views.

In line with this idea, we now explore transfer learning 
as an implicit data augmentation approach, and explore 
its interest to enhance the performance of the proposed 
chemogenomic neural network CN. Indeed, transfer 
learning combines different tasks related to the same 
types of data (proteins or molecules in our case), with the 
aim of providing additional information or representa-
tion power brought by different prediction tasks.

Fig. 7  AUPR scores obtained via 5-fold nested cross-validation on the 
DBEColi dataset for the S1 (random split), S2 (orphan protein in test 
set), S3 (orphan molecule in test set), and S4 (double orphan) settings. 
The performances of CN-feaMLP are compared to the reference 
shallow methods and to FNN and CN as reference methods for deep 
learning. For each setting, the order from left to right in which the 
results are displayed is indicated in legend

Fig. 8  AUPR scores obtained via 5-fold nested cross-validation on 
the DBHuman dataset for the S1 (random split), S2 (orphan proteins 
in test set), S3 (orphan molecules in test set), and S4 (double orphan) 
settings. The performances of CN-feaMLP are compared to the 
reference shallow methods and to FNN and CN as reference methods 
for deep learning. For each setting, the order from left to right in 
which the results are displayed is indicated in legend
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Evaluation of transfer learning for chemogenomics
Principles of transfer learning in chemogenomics
The principle of transfer learning is to gain knowledge by 
solving one problem and apply this knowledge to a differ-
ent but related problem. Transfer learning can take two 
forms: pre-training, or co-training with other prediction 
tasks (even unsupervised tasks) for which large datasets 
are available. This may allow sharing of information and 
improve the performances of the chemogenomics task.

Co-training refers to a strategy in which several pre-
diction tasks are trained simultaneously, while sharing 
parameters of the neural networks, in order to learn a 
richer set of features. We did not consider co-training, 
because this approach suffers from lack of flexibility in 
training, as observed in the field of Natural Language 
Processing [65].

In pre-training, also called “curriculum learning”, a 
model is first trained on a task for which a large dataset 
is available, called the source task. Then, the pre-trained 
model is fine-tuned by re-training the weights on the 
task of interest, called the target task, for which a smaller 
training set is available. Therefore, when training on the 
target task, the initial parameters of the encoder are not 
randomly chosen, but are assigned to their optimised val-
ues according to the source task.

Paul et  al  [66] explored transfer learning in a chem-
oinformatics problem related to organic solar cell 
screening, but this task only screened chemicals, not 
(protein,molecule) pairs, as in the present study.

Fig. 9 illustrates the principle of curriculum learning, in 
the case of a DTI prediction task with the chemogenomic 
neural network CN.

First, the protein sequence and molecular graph encod-
ers are trained with molecule- and protein-specific 
source tasks, corresponding to the grey path in Fig.  9. 
Then, the pre-trained encoders are re-trained, while 
training the MLPpair chemogenomic prediction task cor-
responding to the black path in Fig. 9.

Alternatively, it is possible to “freeze”, i.e. not retrain, 
the pre-trained molecule and protein encoders, but only 
train the final MLPpair with the representations learnt 
from the pre-trained encoders as inputs. If the source 
and target datasets are related “enough”, this can improve 
predictions on the target task.

In the next sections, we explore two pre-training set-
tings: one with a formally identical source task, and 
another with a different source task.

Transfer learning by pre‑training with a formally identical 
source task
The results presented in the previous sections showed 
that our CN chemogenomic network could outperform 
reference deep and shallow machine-learning methods 
(kronSVM or NRLMF ) on large datasets like DBHu-
man, but not on small datasets like DBEColi. Therefore, 
we chose DBEColi to explore whether transfer learning 
by pre-training on a larger and formally identical task, 
i.e. prediction on the DBHuman dataset, can improve 
the prediction performance of CN on small datasets like 
DBEColi to reach those of shallow methods.

This setting is slightly different from that in Fig.  9, 
because the source and target tasks are formally identical: 
the source task of DTIs prediction on DBHuman is used 
to pre-train the whole CN network (protein encoder, 
molecule encoder and MLPpair ), before re-training the 
whole CN on the smaller DBEColi dataset.

Before discussing our results, let us start with general 
observations about implementation of curriculum learn-
ing with the chemogenomic neural network CN.

First, we performed a sanity check to challenge our 
implementation of curriculum learning: we checked that 
re-training the pre-trained model immediately leads to 
the best performance.

Second, we found that curriculum learning often 
allowed to reduce the number of training epochs for 
training the MLPpair network in the second phase. This 
illustrates that pre-trained molecule and protein encod-
ers are closer to the optimal solution than encoders 
whose weights are randomly initialised.

Third, we pre-trained and loaded per block the three 
sub-networks of the chemogenomic neural network: (i) 
the protein sequence encoder, (ii) the molecular graph 
encoder, and (iii) the final prediction MLPpair network. 
We varied the number of layers and neurons in the 
MLPpair network, in order to search for the best archi-
tecture when freezing one or the two encoders. Indeed, a 
fully connected neural network like MLPpair may need a 
relatively large width and depth to leverage the represen-
tations extracted by pre-trained frozen encoders.

We pre-trained the three parts of the chemogenomic 
neural network (the protein sequence encoder, the 

Fig. 9  Sketch of the chemogenomic neural network CN of Fig. 1, 
modified for curriculum learning
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molecular graph encoder and the prediction MLPpair net-
work) on the larger DBHuman dataset before re-training 
on the DBEColi dataset. Interestingly, this led to a loss 
of performance on S1 , with 0.2 in AUPR score instead of 
0.4. This resulted from the protein encoder pre-trained 
on DBHuman. Indeed, pre-training on DBHuman and 
freezing the protein sequence encoder, before training 
the molecular graph encoder and the MLPpair directly 
on DBEColi with randomly initialised parameters, led to 
the same decrease in AUPR score. On the contrary, pre-
training and freezing the molecular graph encoder with 
DBHuman before training the protein sequence encoder 
and the prediction MLPpair directly on DBEColi with ran-
domly initialised parameters, improved the performance 
in some settings with respect to CN directly trained on 
DBEColi, as shown in Table 1 at the row called “curricu-
lum learning”. More precisely, for the S1 (random splits) 
and S3 (orphan molecule) settings, which are expected 
to benefit from a better trained molecular encoder, pre-
training on DBHuman leads to significant improvement 
in performance. This is not the case of the S2 (orphan 
proteins) which would have required pre-training of the 
protein encoder, and for the most difficult S4 (double 
orphan) setting.

In fact, although the source and target tasks are for-
mally identical, DBEColi contains E.  coli proteins and 
their ligands, whereas DBHuman contains human pro-
teins and their ligands. Therefore, the two datasets may 
present statistical bias in protein sequences characteris-
tics, since the distribution of protein sequences in bac-
teria is expected to differ from that of human proteins. 
However, both datasets contain more homogeneous 
small organic drug-like molecules. This may explain a loss 
of performance when pre-training with human proteins, 
while pre-training only the molecular graph encoder on 
the DBHuman dataset improves DTIs prediction in the 
relevant settings ( S1 and S3).

Overall, these results show that transfer learning 
between two formally identical tasks can be observed 
with the chemogenomic neural network CN. Improve-
ments were only observed here when the molecular 
graph encoder is pre-trained, due to bias between pro-
teins in the source and the target datasets. However, pre-
training the protein encoder on a larger dataset involving 
E. coli protein interactions may further improve the pre-
diction performance of CN.

Transfer learning by pre‑training with different source tasks
To further investigate the interest of transfer learning 
with the CN chemogenomics deep learning algorithm, 
we now compare the prediction performance obtained 
on the small target task DBEColi, when the large source 
task is of different although related nature. We used the 

PCBA dataset as source task. It contains information 
about 90 bio-activities for hundreds of thousands of mol-
ecules (see "Materials and methods"). PCBA appeared 
relevant for pre-training the molecule encoder of the 
chemogenomic network, because the bio-activities of 
molecules result, at least in part, from their overall inter-
action profile with proteins in the cell. More precisely, 
the source task used to pre-train the molecule encoder 
consists in simultaneous predictions of molecules activi-
ties in 90 bioassays.

We evaluated pre-training of the molecular graph 
encoder on PCBA by 5-fold nested cross-validation with 
a test and train “positive:negative” ratio of 1:5, in the four 
S1 , S2 , S3 and S4 settings of the DBEColi dataset, and com-
pared it to pre-training the molecular graph encoder on 
DBHuman. In the case of pre-traning with DBHuman, 
only the parameters of the molecule encoder are kept as 
initial values for re-training on DBEColi, since we showed 
that pre-trained parameters as initial values for the pro-
tein encoder decreased performances. Therefore, param-
eters of the protein encoder and of the MLPpair networks 
were randomly initialised. In the case of pre-training with 
PCBA, the source task is to predict the PubChem assay 
bio-activities. The pre-training step again only involves 
the molecule encoder and the MLPpair , since this data-
set only contain bio-activities for molecules. Then, the 
parameters of the molecule encoder are kept for re-train-
ing the chemogenomic network on DBEColi, while the 
protein encoder is randomly initialized.

The performances are reported in Fig. 10 with those of 
the reference methods. The final model obtained when 

Fig. 10  AUPR scores obtained with a 5-fold nested cross-validation 
scheme for the S1 (random split), S2 (orphan protein in test set), 
S3 (orphan molecule in test set), and S4 (double orphan) settings 
on the DBEColi dataset. The performance of CN-currPCBA and 
CN-currDBHuman are compared to the reference shallow methods 
(kronSVM and NRLMF) and to FNN and CN as reference methods for 
deep learning. For each setting, the order from left to right in which 
the results are displayed is indicated in legend
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pre-training the molecular graph encoder on the PCBA 
(resp. DBHuman) dataset is called CN -currPCBA (resp. 
CN -currDBHuman ) in Fig.10

Overall, pre-training the molecular graph encoder on 
DBHuman improved the prediction performance of the 
chemogenomic network in the S1 (random splits) and 
S3 (orphan molecules) settings, with respect to direct 
training on DBEColi (CN and CN -currDBHuman in 
Fig.10). This confirmed in 5-fold nested cross valida-
tion the observations made in the previous section on 
a single train/validation/test split: transfer learning can 
be observed between these two tasks in the CN chem-
ogenomic deep learning method.

Pre-training the molecular graph encoder on PCBA 
yielded to similar performance than direct training 
on DBEColi for the four settings, but did not allow to 
reach the performance observed when pre-training 
with DBHuman ( CN -currPCBA in Fig. 10).

This shows that the nature of the source task has an 
impact on the efficiency of knowledge transfer. It illus-
trates a rather intuitive idea that, knowledge transfer 
from a smaller more similar the source task (DBHu-
man) may better improve the prediction performance 
of the target task, than knowledge transfer from a 
larger but less similar source task (PCBA). However, it 
denies the growing paradigm in artificial intelligence 
that when providing algorithms with large amounts of 
diverse data (or so-called “big data”), even if these data 
are somewhat loosely related to the tasks of interest, 
the algorithms will “find their way” to learn by extract-
ing the relevant information.

However, Fig.  10 shows that, in general, the reference 
shallow methods kronSVM or NRLMF still led to the best 
performance on this small DBEColi dataset, and even 
when transfer learning occurs for deep learning methods, 
at least for the source datasets used in the present study.

Discussion and conclusion
Our goal was explore shallow and deep learning meth-
ods for proteome-wide prediction of DTI, in order to 
point at a few key experiments to perform and avoid 

costly failure later in the drug development process, 
due to unacceptable side-effects.

One important aspect of the present work is that we 
discuss a few key aspects for drug specificity prediction: 

1.	 Our study builds on and provides new insights on the 
chemogenomic neural network initially proposed by 
several authors [48, 50, 67], in which the methods are 
not compared to state-of-the-art shallow and deep 
learning methods.

2.	 we considered four settings, S1 (random splits), S2 
(orphan proteins), S3 (orphan molecules), S4 (double 
orphan), in order to compare the performance of the 
methods in proteome-wide search of off-targets for 
a new drug, a problem involving many predictions 
that are closer to the orphan settings S2 , S3 , or S4 
than to the S1 setting for which high performance are 
reached by all methods.

3.	 We also studied the performance of the methods on 
datasets of various sizes. Indeed, although large DTIs 
datasets are becoming available nowadays, learning 
on a small but well focused dataset with respect to 
the problem at hand might sometimes be a better 
strategy. Therefore, it is interesting to assess predic-
tion performances of the chemogenomic methods 
both on large and small datasets.

For large datasets like DBHuman (in the range of 10,000 
interactions and above), we showed that the proposed 
deep learning chemogenomic neural network CN out-
performs state-of-the art reference shallow machine-
learning methods, particularly in the important S2 , S3 and 
S4 orphan settings, and competes with the reference deep 
learning FNN method that uses expert-driven descrip-
tors as inputs.

In order to evaluate whether this result would gen-
eralise to other large datasets, we ran the CN deep 
learning method and the NRLMF   shallow method on 
another large dataset built from the ChEMBL database 
(see "Materials and methods"). The results in the S1 , S2 , 
S3 and S4 settings, for a single train/validation/test split 

Table 1  AUPR score for  the  two transfer learning modifications of  the  chemogenomic neural network CN, based 
on a single train/validation/test split of the DBEColi dataset

The curriculum learning line corresponds to pre-training the molecule encoder of CN on the DBHuman dataset. The standard deviations are obtained by repeating 5 
times the evaluation procedure

Raw ( S1) Orphan proteins ( S2) Orphan molecules ( S3) Double orphan ( S4)

Chemogenomic neural net-
work (CN)

39.57± 4.17 26.74± 2.49 43.74± 2.35 24.63± 1.89

Curriculum learning 45.06± 2.64 21.43± 3.62 51.45± 3.03 20.97± 2.70

CN − feaMLP 50.616± 2.71 30.89± 4.93 42.04± 2.95 25.77± 3.60
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are displayed in Table 2. They show that the CN method 
outperforms the shallow NRLMF   method in two of the 
three key orphan settings ( S3 and S4 ), while performing 
similarly in S1 and S2 . Although we did not conduct a full 
study on this larger dataset (56,000 interactions) for com-
putational reasons, the results in Table 2 show the same 
trends as those obtained on the DrugBank-based DBHu-
man dataset: deep learning methods should be used 
on large datasets (in the range of 10,000 interactions or 
more).

In particular, our study highlights that, for large data-
sets, the FNN algorithm with expert-based protein and 
molecule descriptors appears as a simple deep learning 
approach that provides state-of-the-art performance in 
many settings. It should be considered as a good default 
method, and as a reference method for future chemog-
enomic benchmark studies. In particular, we did not 
combine sophisticated expert-crafted descriptors, as pro-
posed in other studies with shallow algorithms  [68–71], 
which leaves space for improvement and reinforces the 
interest of this approach.

However, the proposed chemogenomic network CN 
offers a versatile architecture for more sophisticated 
strategies, such as data augmentation approaches or 
transfer learning, in order to enhance the representation 
power of protein or molecule encodings with respect to 
the problem at hand.

For smaller datasets like DBColi (less than a few thou-
sands of interactions), we observed that NRLMF shallow 
method provides the best performance for DTIs pre-
diction. It is a good default method for large scale DTI 
prediction, and provides a reference method for future 
chemogenomics benchmark studies on small datasets.

To further explore this point, we also considered the 
Random Forest algorithm with proteochemometric 
descriptors proposed in van Westen et al.  [8], because 
they displayed the best performances on small datasets 
in specific families of proteins (i.e. not in the chem-
ogenomics setting considered in the present paper). 
We tested the descriptors recommended in this study 
(z-scales(3) together with protein fingerprints(FP8) as 
protein descriptors, and ECFP as molecule descriptors) 
on the DBColi dataset. The prediction performances of 
this method are shown in Table 3, where we also recall 

those of the other methods tested in the present paper. 
Random Forests with proteochemometric descriptors 
did not reach the performance of the other shallow 
methods, but they overtook those of FNN and CN deep 
learning methods. However, we are aware that the pre-
diction performances depend on the dataset, and that 
methods may rank differently on family-focused data-
sets used in  [8], and on more diverse datasets DBColi 
dataset.

All methods were trained on drug-like molecules and 
drugabble proteins, because the aim was drug speci-
ficity prediction. However, all tested methods readily 
apply to prediction of interactions between other types 
of molecules or proteins, because only the protein 
sequences and molecule structures are required. How-
ever, the methods should be re-trained, because the 
good default hyper-parameters provided in the present 
study might not be optimal for highly different datasets 
(for example, not druglike molecules, or very different 
proteins such as plant proteins). This point is particu-
larly critical for the CN and FNN deep learning meth-
ods, because they contain more hyper-parameters than 
shallow methods. In addition, the results of the present 
study might not extrapolate to datasets highly different 
from those considered here, because methods might 
rank in different orders on very different datasets.

An important contribution of the present paper is to 
explore data augmentation techniques in deep learning 
for chemogenomics. We investigated two directions for 
integration of different data sources: 

1.	 Learning with multiple views of the data: combin-
ing learnt and expert-driven features in the CN net-
work yielded to substantial improvements, and future 
efforts could be devoted to the design of neural net-

Table 2  AUPR scores on  the  Chembl-based dataset 
in  the  four S1 , S2 , S3 , or S4 settings, and  for  a test sample 
positive:negative ratio 1:5

S1 S2 S3 S4

NRLMF 77.95± 0.27 58.85± 5.74 58.71± 1.3 30.6± 1.54

CN 76.91± 2.15 55.44± 6.26 68.89± 7.41 35.61± 3.01

Table 3  AUPR scores (mean and  standard deviation 
obtained by nested 5-fold cross-validation) on the DBEColi 
dataset in  the  four S1 , S2 , S3 , or S4 settings, and  for  a test 
sample positive:negative ratio 1:5

S1 S2 S3 S4

kronSVM 61.55± 3.11 28.95± 7.66 60.96± 3.73 24.4± 8.8

NRLMF 59.89± 4.35 35.62± 8.07 60.06± 2.73 34.5± 9.75

FNN 51.55± 2.55 24.26± 3.91 49.34± 3.11 22.97± 6.59

Chemog-
enomic 
neural 
network 
(CN)

49.08± 4.31 28.38± 5.81 46.14± 4.92 27.0± 6.96

RF with 
proteoch-
emometric 
features

53.49± 2.19 23.6± 4.13 51.16± 4.32 22.51± 5.36
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works that integrate multiple views of molecules and 
proteins within the same model. However, in the case 
of small datasets like DBEColi, these performance 
improvements did not allow to reach those of shal-
low machine-learning methods.

2.	 Transfer learning with larger similar or with differ-
ent source tasks. We report that curriculum learning 
may also improve the prediction performance if the 
source task is highly similar to the target task.

Overall a promising direction to improve the proposed 
chemogenomic neural network CN would be to inte-
grate various data views and use large similar auxiliary 
tasks, in order to leverage relevant chemical informa-
tion such as bioassay signatures and drug-induced phe-
notypes that are available in many public databases.
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