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Abstract 

Ensemble learning helps improve machine learning results by combining several models and allows the produc‑
tion of better predictive performance compared to a single model. It also benefits and accelerates the researches in 
quantitative structure–activity relationship (QSAR) and quantitative structure–property relationship (QSPR). With the 
growing number of ensemble learning models such as random forest, the effectiveness of QSAR/QSPR will be limited 
by the machine’s inability to interpret the predictions to researchers. In fact, many implementations of ensemble 
learning models are able to quantify the overall magnitude of each feature. For example, feature importance allows 
us to assess the relative importance of features and to interpret the predictions. However, different ensemble learning 
methods or implementations may lead to different feature selections for interpretation. In this paper, we compared 
the predictability and interpretability of four typical well-established ensemble learning models (Random forest, 
extreme randomized trees, adaptive boosting and gradient boosting) for regression and binary classification mod‑
eling tasks. Then, the blending methods were built by summarizing four different ensemble learning methods. The 
blending method led to better performance and a unification interpretation by summarizing individual predictions 
from different learning models. The important features of two case studies which gave us some valuable information 
to compound properties were discussed in detail in this report. QSPR modeling with interpretable machine learning 
techniques can move the chemical design forward to work more efficiently, confirm hypothesis and establish knowl‑
edge for better results.
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Introduction
Machine learning has led to an explosion of applica-
tions, and researchers have developed new capabilities 
of machine learning for a wide variety of tasks. There is 
growing interest in applications of machine-learning 
techniques in quantitative structure–activity relationship 

(QSAR) and quantitative structure–property relationship 
(QSPR) modeling research [1]. QSARs/QSPRs are mod-
els where characteristics of molecules are correlated with 
their experimental behaviors using various mathematical 
regression and classification algorithms [2].

One of the issues of QSAR/QSPR models is that they 
are difficult to interpret in a chemically meaningful man-
ner. The effectiveness of QSPR will be limited by the 
machine’s inability to explain its thoughts and actions 
to researchers. While interpretable models can be easy 
to interpret simple such as linear regression [3] and 
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decision trees [4], the most powerful algorithms with 
high accuracy like neural networks [5], support vector 
machine [6] are uninterpretable models, which provide 
predictions that are not designed to be interpretable 
and cannot be easily interpreted. Interpretable machine-
learning approaches will be essential for researchers to 
understand, trust, and effectively manage. Approaches 
for interpreting a model can help to extract informa-
tion from a model to justify its prediction. Moreover, the 
interpretation of the machine-learning model should be 
simple enough to be human-understandable. Thus, inter-
pretable approaches should utilize interpretable models 
and interpretable descriptors. Interpretable descriptors 
must have clear structural or chemical meaning.

Traditional interpretable models such as linear regres-
sion or decision tree have unfavorable performance that 
we cannot merely squeeze much more accuracy out of 
any single model. New tools are being developed to cre-
ate better interpretable models [7, 8]. One potential way 
to increase accuracy without losing too much interpret-
ability is to combine the predictions of numbers of tra-
ditional interpretable models. It is called “ensemble 
learning.” Random forests (RF) is one of the examples of 
decision tree (DT) based ensemble learning models [9]. 
RF is typically treated as an uninterpretable model due 
to the complicated algorithm design. In fact, considering 
that the output of random forests is the majority vote by 
a large number of independent decision trees, and each 
tree is naturally interpretable. One efficient way to get an 
insight into a RF model is to compute feature importance 
[10]. In RF, it is not very hard to gauge the influence of 
individual features in a single tree at a time, but the global 
feature importance of RF can be quantified by the total 
decrease in node impurity averaged over all trees of the 
ensemble.

In QSAR/QSPR models, feature importance can be 
used to estimate the importance of single descriptors 
or group of descriptors representing different chemi-
cal properties to explain the relationships [11, 12]. Guha 
and Jurs [13] demonstrated that the RF model selected 
important descriptors similar to the multilinear regres-
sion and partial least square regression models. Polish-
chuk et al. [14] modeled the toxicity of 664 compounds 
toward tetrahymena pyriformis with RF and determined 
the importance of hydrophobic factors for toxicity vari-
ation. Marchese Robinson et  al. [15] investigated differ-
ent interpretation strategies for RF, linear SVM, and PLS 
models on several benchmark datasets, and the predic-
tions were interpreted in a chemically and biologically 
meaningful way.

A benefit of using a DT-based ensemble learning mod-
els such as RF is that they can automatically provide esti-
mates of feature importance from a trained predictive 

model. Generally, feature importance is a score that indi-
cates how useful the feature was in the construction of 
the DTs within the model. However, the importance cal-
culations are strongly based on the ensemble methods 
(such as bagging [16] or boosting [17]). For example, the 
learning in RF is done in parallel using “bagging,” and 
each tree is built from the random selection of features. 
On the other hands, the learning by “boosting” is done 
serially. Boosting tends to choose highly correlated fea-
tures and use them in several trees. Therefore, different 
ensemble learning models may lead to different predic-
tion results and different feature selections for interpre-
tation. Therefore, the generalization of predictability and 
interpretability may be limited using feature importance 
provided by one specific DT-based ensemble learning 
model.

To solve this problem of different importance calcu-
lations, herein, we tried to ensemble the predictions of 
different DT-based ensemble learning models. The pre-
dictions from different models can simply be averaged, 
weighted, or combined in more mathematically sophis-
ticated ways such as combinatorial QSAR modeling 
[18]. Super-learner (or meta-learner) is one of the great 
options as a more rigorous way to combine model pre-
dictions. The super-learner is a specific implementation 
of stacked generalization developed by Wolpert [19]. 
Stacked generalization uses a combiner model to decide 
the weights for the constituent predictions. “Blending” 
is very close to stacked generalization and can success-
fully improve prediction accuracy [20], but slightly more 
straightforward and less risk of an information leak 
than stacked generalization. In blending, the combining 
mechanism is that predictions from different models are 
used as training data for the super-learner (blender) to 
approximate the same target value. Basically, the blender 
can figure out the combining mechanism and do not 
affect the interpretability of each individual constituent 
model. Therefore, blending enhances understanding and 
leads to greater awareness and familiarity in a dataset by 
combining interpretable models.

In this paper, we proposed the development of a 
method for interpretable models based on “blending” 
to overcome the shortcomings of DT-based ensemble 
learning models. We used different blending methods 
to combine four different DT-based ensemble learning 
models for regression and binary classification modeling 
tasks. To validate the proposed method, we conducted 
two proof-of-concept case studies and confirmed that 
our method could propose preferable property values 
and interpretability. The established QSPR model for a 
regression task of fluorescence dataset was performed 
to study the fluorescence emission wavelengths of 413 
fluorescent dyes in different solvent conditions. For 
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the classification task, we used an organic compounds 
database with 3786 records to predict the liquid crystal 
behavior. We compared the predictive performances and 
important features from the blending method and four 
different DT-based ensemble models in both case stud-
ies. The important features used in these QSPR models 
which may give us some valuable information to prop-
erties were discussed in detail in this report. This study 
may lead to a better understanding of DT-based ensem-
ble learning models and provide a meaningful manner for 
predictability and interpretability improvement.

Method
Dataset
For the two proof-of-concept studies, two different data-
sets were used: compounds for fluorescence dyes and liq-
uid crystals.

1. Fluorescence dataset
A large set of 413 dyes maximum experimental fluo-
rescence wavelength (λem) were collected in the data-
base [21] and from several fluorescence researches 
[22–24]. The fluorescence dataset included a large vari-
ety of chromophore derivatives listed in Additional file 1: 
Table  S1 such as cyanine, xanthene, coumarin, pyrene, 
naphthalene, anthracene, etc. A dataset containing 413 
dyes, 473 samples for 418 dyes in different solvent condi-
tions were used in this study. The data set was randomly 
divided into two subsets from each chromophore deriva-
tives: a training dataset of 392 samples and a test data-
set of 81 samples were used. The training set was used to 
evaluate their predictability of QSPR models.

2. Liquid crystal dataset
A liquid crystal dataset was taken from LiqCryst data-
base [25]. The dataset consisted of 3786 rod-like aromatic 
compounds with a variety of different mesogen types and 
wing substituents. There were 2780 liquid crystal (LC) 
compounds and 1006 compounds which LC behavior 
was not observed (NLC). For the purpose of develop-
ing the model, the dataset was randomly divided into 
the training set and test set, in the ratio 3:1. The train-
ing dataset consisted of 2060 LCs and 779 NLCs. The test 
dataset, which included 720 LCs and 227 NLCs, was used 
to test the developed models and to evaluate their gener-
alization ability of classification.

Model
Decision tree and ensemble learning
Decision tree (DT) is a popular method and shows many 
advantages over other simple models such as the classifi-
cation and regression tree (CART) [4]. DT is very fast in 
training and requires practically no data preparation such 

as normalization or feature selection. Furthermore, DT 
is simple to understand and interpret using a flowchart-
like structure. However, DTs have extremely low bias 
because they maximally overfit to the training data. Thus 
DTs are known to be unstable because small variations in 
the training data can result in different trees and different 
predictions. To address these shortcomings, ensemble 
learning algorithms have been proposed.

Ensemble learning algorithms are designed to improve 
the stability and accuracy of machine learning algorithms 
used in both classification and regression because they 
can be more accurate and robust than a single classi-
fier or regressor [26–28]. The ensemble learning is that 
attempts to create a strong classifier/regressor from a 
number of weak classifiers/regressors. Fast and simple 
algorithms such as DT are commonly used as weak clas-
sifiers/regressors in ensemble learning methods. Several 
strategies are using in ensemble learning, such as bagging 
and boosting.

Bagging (stands for bootstrap aggregation) is a paral-
lel ensemble method and aim to decrease the variance 
[16]. Bagging produces several subsets for training from 
the original dataset by random sampling with replace-
ments, and each model is built independently. Bagging 
uses multiple models with high variance but low bias to 
obtain better predictions. For example, RF is one of the 
most popular and most powerful applications of bagging.

Boosting is a sequential ensemble method to decrease 
bias instead of variance [17]. It is a two-step approach, 
where boosting first uses subsets of the original data to 
build a model and then adds new models to reduce the 
error of previous models. Unlike bagging, every new sub-
set contains the elements that were likely to be misclas-
sified by previous models. The prediction of boosting is 
combined with those models using a particular cost func-
tion. Boosting uses multiple models with low variance 
but high bias models to obtain better predictions. Ada-
Boost is one of the best algorithms used to boost the per-
formance of decision.

Random forests (RF)
Random forests (RF) is a versatile ensemble learning 
model using single full-grown DTs for both classifica-
tion and regression tasks developed by Breiman [9]. Two 
types of randomness, bootstrap sampling and random 
selection of input variables, are used in the algorithm to 
make sure that the single DT grown in the forest are dis-
similar and uncorrelated from each other. At each node 
of DT, the optimal split is derived by the reduction in 
impurity as CART. Growing a forest of trees with ran-
domness leads to better predictions compared to a single 
DT and helps to make the model robust to noise in the 
data set.
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Extremely randomized trees (ExtraTrees)
The ExtraTrees method is another ensemble learning 
model based on bagging which was introduced by Geurts 
et al. [29]. ExtraTrees is trained using bootstrap sampling 
and the random variable selection, like in an ordinary 
RF. But, the optimal cut-point at each node of DT dur-
ing training is randomized. Subsequently, ExtraTrees is 
faster than RF when training. Geurts et  al. established 
that ExtraTrees lead to a further decrease in overall vari-
ance. Furthermore, they have compared ExtraTrees with 
RF and shown to perform equal to or better than RF.

Adaptive boosting (AdaBoost)
AdaBoost is the first successful boosting algorithm 
developed by Freund and Schapire [17]. AdaBoost cre-
ates numbers of weak learners by adaptively adjusting 
the weights of each weak learner. After training a weak 
learner, AdaBoost increases the weight on the misclassi-
fied samples so that these samples will make up a larger 
part of the next weak learner training set. Then, the pre-
dictions of AdaBoost are made by majority vote of the 
weak learners’ predictions. Therefore, AdaBoost can gen-
erate expanding diversity to improve performance.

Gradient boosting (GBM)
Gradient boosting is another boosting algorithm similar 
to AdaBoost. The idea of gradient boosting is an optimi-
zation on a suitable cost function originated by Breiman 
[30]. This idea was further developed by Friedman [31, 
32] and called gradient boosting machines (GBM). GBM 
also works by sequentially adding weak learners to an 
ensemble like AdaBoost. However, instead of tweaking 
the instance weights at every iteration as AdaBoost does, 
GBM tries to fit the new weak learner according to resid-
ual errors made by the previous weak learner. In other 
words, the algorithm of GBM is a numerical optimization 
problem to minimize the loss of weak learners using gra-
dient descent. GBM has led to the development of boost-
ing algorithms in many areas of machine learning.

Feature importance
One efficient way of getting an insight into above DT-
based ensemble models is to compute feature importance 
which is relatively straightforward to retrieve importance 
scores for each attribute. Feature importance can be cal-
culated for a single DT by the amount that each attribute 
improves the performance measure. The performance 
measure is computing the amount of “impurity” such 
as variance in case of regression trees and Gini coef-
ficient or entropy in case of classification trees. Gener-
ally, DT-based ensemble models provide a score that 
indicates how useful or valuable each feature was in the 

construction of the DTs within the model. The more an 
attribute is used to make key decisions with DTs, the 
higher its relative importance score. In other words, fea-
tures with high importance scores are only important for 
the main split in DTs. The absolute value of the impor-
tance score is not as important as the relative values, 
which we can use to determine the most relevant features 
for a task. The basic use of the feature importance is to 
create a “feature ranking” among the features from high 
to low for each model.

Blending
Ensemble learning is a procedure designed to increase 
predictive performance by combining the predictions 
of multiple machine learning models. There is a variety 
of ensemble methods, from simple ones like voting or 
averaging the predictions, to building complex learning 
models using the predictions as features. Stacked gener-
alization is a way of combining predictions of multiple 
base models that have been demonstrated for a classi-
fication task [19], which has also been used for regres-
sion [33]. Stacked generalization applies a higher-level 
learning algorithm (so-called “meta-learner” or “super-
learner”) and out-of-fold predictions for the training data 
to discover the best way of how to combine the outputs 
of the base models. Blending is very close to stacked gen-
eralization. Instead of creating out-of-fold predictions, 
blending is more straightforward and less risk of an infor-
mation leak than stacked generalization.

There are two kinds of models in blending: several base 
models (level-0 models) and one blender (level-1 model) 
shown in Fig. 1. When using the blending for predictions, 
the training data is first fed into the level-0 models, and 
each of the level-0 model calculates a prediction value. 
These values are fed into the level-1 model; the level-1 
model combines them and computes the final predic-
tion. In other words, the inputs to the level-1 model are 
the outcomes of the level-0 models. Thus, the blender 
(level-1 model) decides if it wants to keep that level-0 
model or not and summarizes information from level-0 
models. The feature importance of blending was the 

Fig. 1  Concept of blending
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summarization of level-0 model with different weights as 
following:

where FIblend is the feature importance of proposed 
method, n is the number of level-0 models, wi is the 
weight of each level-0 model, and FIi is the feature impor-
tance of each level-0 model. To ensure the predictability 
and interpretability preserved from each level-0 models, 
we used the lowest possible number of individual con-
stituent models; then, we used simple voting, linear com-
binations, or DT-based ensemble learning as a level-1 
model. In this work, we use three different blenders to 
combine results of level-0 models. To simply compare 
the different performance of blenders, we defined three 
blending methods as following:

•	 Uniform blending: use simple voting in classification 
and average in regression as blenders. The weights 
(wi) of each model were the same.

•	 Linear blending: use a linear model as a blender.
	 We used logistic regression in a classification task 

and multiple linear regression in a regression task. 
The weights (wi) of each model were determined by 
regression coefficients.

•	 Any blending: use a non-linear model as a blender.
•	 We used GBM with simple structures (n_estima-

tors = 10) as the level-1 model because of the serial 
dependence of level-0 models. The weights (wi) of 
each model were determined by the feature impor-
tance of GBM.

Descriptor selection
Many studies have noted to achieve model interpretation 
in many research fields in QSAR/QSPR using interpret-
able descriptors [34, 35]. Therefore, we used different 
interpretable descriptor sets for two case studies.

Dragon 7 software [36], Gaussian 09 software [37] and 
RDKit package [38] were used for descriptor calculation. 
In the case study of fluorescence dataset, 2143 Dragon 7 
molecular descriptors from 0-dimensional to 2-dimen-
sional molecular information and 25 quantum chemical 
(QC) descriptors were calculated by Gaussian 09 software. 
The geometries of the molecules were optimized with the 
B3LYP density functional method [39], 6–31G* basis set, 
and frequency calculations. For improving the prediction 
accuracy, Dragon 7 descriptors demonstrated better pre-
diction than RDKit that the result is in Additional file  1: 
Table  S2. 3-dimensional Dragon 7 molecular descriptors 
were not considered since they are hardly interpreted. The 

FIblend =
n∑

i=1

wiFIi

use of QC descriptors can successfully improve prediction 
and interpretability from our previous work [40] and pro-
vide more specific physical meanings. We consider solvent 
species in model constructing since the solvent effect plays 
a more critical role in the process of fluorescence [41].

In the case study of liquid crystal dataset, RDKit 
descriptors were applied in this research for improving 
the accuracy of LC behavior prediction because Dragon 
7 descriptors did not improve predictability. Our previ-
ous works noted that structural descriptors resulted in 
good LC prediction [42], we only calculated interpret-
able structural descriptors in RDKit such as atom counts 
and numbers of fragments. The comparison of Dragon 7 
and RDKit descriptors is listed in Additional file 1. Fur-
thermore, we separated the structural template of LC 
into mesogens and wings for descriptor calculations to 
improve interpretability shown in Fig. 2. Total 250 inter-
pretable descriptors were calculated by RDKits contain-
ing 84 descriptors from a raw structure, 72 descriptors 
from mesogen, 46 descriptors from wing1 and 48 
descriptors from wing2. The detail of descriptor selection 
is provided in Additional file 1.

Evaluation of model performance
The performance of created regression models was evalu-
ated by coefficient of determination (R2) and root mean 
square error (RMSE).

where yj is the observed value for the jth observation, ŷj 
is the predicted value and n is the number of samples.

The performance of created classification models was 
analyzed on the basis of classification results obtained 
for the prediction set. The used performance metrics are 
defined as follows:

Accuracy Acc = a+d
a+b+c+d

Precision Pr = a
a+c

Recall r = a
a+b

F1 score F1 = 2
1

Pr
+ 1

r

= 2a
2a+b+c

Matthews correlation coefficient (MCC)

RMSE =

√√√√1

n

n∑

j=1

(
yj − ŷj

)2

Fig. 2  Structure template of rod-like LC
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where a is true positive, b is false negative, c is false posi-
tive, and d is true negative (Table 1).

Accuracy (Acc) gives the percentage of LCs and NLCs 
correctly classified, while the precision (Pr) gives the per-
centage of correctly classified LCs among all compounds 
which are classified as LCs. The recall (r) represents the 
numerical value of the probability of identifying com-
pounds that exhibit the LC phases. The F1 score (F1) can 
be interpreted as a weighted average of precision and 
recall. This score takes both false positives and false nega-
tives into account. The Matthews correlation coefficient 
(MCC) is a correlation coefficient to handle imbalanced 
data between the observed and predicted binary classifi-
cations. It is not as easy to understand as accuracy intui-
tively, but the F1 and MCC are usually more useful than 
accuracy, especially for imbalanced class distribution.

Software and implementation
Four DT-based ensemble learning models are freely 
available in Python. RF, ExtraTrees, AdaBoost, and GBM 
were constructed using Scikit-learn package in Python 
[43]. All models are able to compute feature importance 
automatically for every feature after training. All descrip-
tors in this study were calculated by Dragon 7 and RDKit. 
Statistical analyses were conducted using Python scripts.

Results and discussion
Case study 1: fluorescence dataset
Performance of DT‑based ensemble models
To obtain DT-based ensemble learning models, the 
hyper-parameters were determined based on the root 
mean squared error (RMSE) of fivefold cross-validation 
using a randomized search. The overall performances for 
fluorescence wavelength (λem) of four different DT-based 
ensemble learning approaches are presented in Table  2. 
Figures showing the predicted λem versus experimental 
λem for training dataset and test dataset are in Additional 
file 1: Figs. S3–S6).

The performances of all of the four DT-based ensemble 
learning models were similar in agreement of our previ-
ous work results which ensemble learning was suitable 
for fluorescence prediction than single models [40]. The 

MCC =
a× d − b× c

√
(a+ b)(a+ c)(b+ d)(c + d)

best well-fitted model was ExtraTrees with R2 = 0.991, 
RMSE = 11.15  nm for training dataset which demon-
strated good predictability for the external test dataset 
( R2

pred = 0.908, RMSE = 33.71  nm). In machine learning, 
there is something called the “No Free Lunch” theorem 
which states that no machine learning model can typi-
cally capture the full complexity of problems. Although 
all models demonstrated nearly the same results, each 
model only provides a rough representation of the prob-
lem to solve. Different models may be likely to have vari-
ous prediction results. Therefore, the interpretation of 
models may help to understand the factors of model 
predictions.

Interpretation of DT‑based ensemble models
The feature importance provided by DT-based ensem-
ble learning models can help identify input variables that 
may be most relevant of each descriptor to the regres-
sion problems. Since the random state may influence the 
feature importance in ensemble learning models, every 
model was repeated ten times with different random 
states from 0 to 10. The basic use of the feature impor-
tance is to create a “feature ranking” among the features 
from high to low for each model. It is meaningless to 
compare the values of feature importance of different 
models. We hence discuss the top 10 important descrip-
tors among 2169 descriptors in four models which were 
highly related to fluorescence wavelengths.

Table 3 shows that ten important descriptors and their 
feature importance from four DT-based ensemble learn-
ing models for the fluorescence wavelength. The feature 
importance of HOMO–LUMO gap is far greater than 
other descriptors. The rest descriptors had relatively 
lower scores of feature importance than the HOMO–
LUMO gap. In our opinion, models made the main pre-
diction decision based on HOMO–LUMO gap and used 
the rest descriptors for minor correlation in predictions 
because the emission process is the energy relaxation 
from LUMO to HOMO.

In RF, the feature importance of HOMO–LUMO 
gap was three times larger than AP(xx) which 

Table 1  Confusion table

Actual class Predicted class

LC NLC

LC a b

NLC c d

Table 2  The results of  four different DT-based ensemble 
learning methods

Training dataset Test dataset

R2 RMSE (nm) R2
pred

RMSE (nm)

RF 0.966 22.25 0.904 34.42

ExtraTrees 0.991 11.15 0.908 33.71

AdaBoost 0.981 16.22 0.904 34.45

GBM 0.988 12.92 0.905 34.26
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HOMO–LUMO gap dominated the main predictions. 
RF used topological descriptors in minor correlations 
for final predictions. The feature importance scores of 
topological descriptors were much smaller than the 
HOMO–LUMO gap which means less effect to pre-
dictions. In ExtraTrees, F01[C-N] was as important as 
AP(xx) because of the large number of cyanine dyes in 
training dataset. Unlike RF, HOMO–LUMO gap did not 
have extremely high importance than other descriptors 
since the ExtraTrees did not optimize cut-points of DTs 
in ExtraTrees. ExtraTrees used more structural descrip-
tors (F01[C-N], F01[C-N], F01[C-C] and C-004) which 
also resulted from cyanine dyes. In AdaBoost, more QC 
descriptors were selected to build DT weak learners 
since the depth of DTs in AdaBoost is only five. Similar 
to ExtraTrees, structural descriptors also had high impor-
tance scores in AdaBoost. In GBM, except the HOMO–
LUMO gap and solvent, the rest descriptors had small 
importance scores like RF. The descriptors selected by 
GBM were apparently different from the other three 
models. Interestingly, GBM was the only model that 
focus on solvent effect.

Obviously, four DT-based ensemble learning models 
used different descriptors and prediction mechanisms 
to approach fluorescence prediction. There is no abso-
lute answer which model is the correct model for pre-
diction and interpretation because the fluorescence is 
a complex phenomenon. It is hard to interpret the rela-
tionship between descriptors and properties because 
the information from four different models is too scat-
tered. One of the best ways to improve predictions and 
extract information from prediction models is to com-
bine or summarize different models. Thus, we tried to 
use blending to summarize information from four dif-
ferent DT-base ensemble learning models and discuss 
the result in the next section.

Performance of blending models
The prediction results of four DT-base ensemble learn-
ing models (level-0 models) were fed into the blending 
model (level-1 models). Three different blending meth-
ods are listed as follows:

Table 3  Top 10 important descriptors selected by four DT-based ensemble learning models

RF ExtraTrees

Selected descriptors Feature importance Selected descriptors Feature 
importance

Gap 0.3412 Gap 0.0712

AP(xx) 0.0986 F01[C-N] 0.0350

Chi1_EA(dm) 0.0344 AP(xx) 0.0243

Chi0_EA(dm) 0.0274 SpMax2_Bh(i) 0.0221

EP(xx) 0.0239 F02[C-N] 0.0192

P_VSA_ppp_L 0.0215 SpMax7_Bh(m) 0.0179

SpDiam_AEA(ed) 0.0160 F01[C-C] 0.0174

SpMax_AEA(ed) 0.0134 C-004 0.0157

SpMin5_Bh(m) 0.0119 P_VSA_e_2 0.0152

CATS2D_06_LL 0.0093 EP(xx) 0.0123

AdaBoost GBM

Selected descriptors Feature importance Selected descriptors Feature 
importance

Gap 0.1196 Gap 0.1621

AP(xx) 0.0682 Solvent 0.0534

P_VSA_MR_7 0.0601 MATS1e 0.0147

SpMax2_Bh(i) 0.0408 Chi1_EA(dm) 0.0108

F01[C-N] 0.0382 MATS6m 0.0107

P_VSA_ppp_L 0.0317 SpMax_AEA(ed) 0.0102

F02[C-N] 0.0224 Eig01_AEA(ed) 0.0100

LUMO 0.0197 CATS2D_00_LL 0.0092

EP(xx) 0.0167 AP(xx) 0.0089

SdsCH 0.0141 SpMin8_Bh(e) 0.0086
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•	 Uniform blending: average the prediction results and 
feature importance (no meta-learning).

•	 Linear blending: use multiple linear regression to 
summarize information (linear meta-learning).

•	 Any blending: use GBM regression to summarize 
information (non-linear meta-learning).

The results of the blending models are shown in 
Table 4. The summarization of level-0 models with blend-
ing successfully improved the prediction performance of 
fluorescence prediction. Simple summarization of level-0 
models such as uniform blending and linear blending can 
efficiently overcome the pros and cons of level-0 mod-
els. Any blending exhibited the best prediction and large 
improvement from level-0 models. The only difference is 
that there are same weights of level-0 models in uniform 
blending but different weights (RF:10%, ExtraTrees:56%, 
AdaBoost:20%, GBM:14%) in linear blending. Above 
three blending methods, any blending was performed to 
develop a nonlinear relationship between level-0 models 
and fluorescence wavelength. To obtain better results, the 
hyper-parameters (n_estimators = 10, max_depth = 8, 
learning_rate = 0.1) that influence the performance of 
level-1 GBM were optimized by grid search with fivefold 
cross-validation. The R2 of the training dataset was 0.996, 
and the R2 of the test dataset was 0.931. Any blending 
model had the RMSE of 7.84 nm for the training dataset, 
29.11 nm for the test dataset. Figure 3 shows the experi-
mental values versus calculated values of λem by any 
blending. The improvement of any blending was larger 
than uniform blending and linear blending. Therefore, it 
reveals that none of level-0 models had the best answer 
but the ensemble of level-0 models can lead to better 
predictions.

Performance standards such as R2 and RMSE play 
crucial roles in determining the success or failure of 
model training and performance improvement efforts. 
However, the differences between models were not 
significant. In fact, blending only can provide small 
improvements since DT-based ensemble learning 
models are already powerful algorithms. Due to the 
complexity of fluorescence mechanisms, none of the 
models are perfect. Thus, we not only compared the 

difference between standards but also examined the 
difference in predictions of test samples. Figure  4 
reveals experimental λem values versus calculated λem 
values of the test set using RF, ExtraTrees, AdaBoost, 
GBM and any blending. In Fig. 4, we highlighted four 
different areas with large prediction error in some 
models, and some chemical structure examples are 
listed in Figs. 5, 6.

Every model failed to predict the λem of structures 
in area A and area B because four ensemble learning 
models cannot successfully capture the patterns of the 
fluorescence phenomena. In area A, any blending could 
slightly reduce the prediction error by using the accu-
rate prediction provided by ExtraTrees. The two struc-
tures in area B had long fluorescence wavelengths due 
to the solvent effect, but lack of samples in different sol-
vent causes the worst predictions.

Any blend performed better prediction in area C and 
area D among all ensemble learning models with bet-
ter R2 and RMSE. In area C, the significant weakness 
of RF, ExtraTrees and AdaBoost was the prediction of 
tetracarboxylic dianhydride structures. The correct 
predictions of any blending only relied on predictions 
of GBM. On the other hand, three dyes in area D were 
hard to be predicted by RF and GBM. Any blending 
provided better predictions based on ExtraTrees and 
AdaBoost. In summary, four DT-based ensemble mod-
els had their own pros and cons for predictions of spe-
cific dyes. Therefore, the improvement provided by any 
blending is not only the performance standards but also 
summarization of different models.

Table 4  The results of three different blending methods

Training dataset Test dataset

R2 RMSE (nm) R2
pred

RMSE (nm)

Uniform blending 0.988 13.26 0.921 31.35

Linear blending 0.992 10.25 0.922 31.05

Any blending 0.996 7.84 0.931 29.11

Fig. 3  Experimental values versus calculated values of λem by any 
blending
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Interpretation of blending models
Table 5 shows that ten important descriptors and feature 
importance from three blending methods. Obviously, 
unlike the feature importance results of level-models, 
three blending methods selected similar descriptors but 
the score and ranking of each descriptor were slightly 
different. Despite the small difference caused by each 
blending method, the summarized information led to a 
unification explanation which was easier for interpreta-
tion of models.

We discuss the top ten important descriptors in any 
blending models because of the high predictive accu-
racy for fluorescence wavelength. The ten important 
descriptors also contained three QC descriptors. The 
HOMO–LUMO gap, Van der Waals surface areas 
(P_VSA_ppp_L) can be explained as the absorption 
process of compounds. For example, dyes with large 
conjugation area such as cyanine dyes result to the 
large Van der Waals surface area. SpMax2_Bh(i), a top-
ological descriptor based on ionization potential, may 

Fig. 4  Performance comparison of a RF, ExtraTrees and any blending, b AdaBoost, GBM and any blending

Fig. 5  Chemical structures in area A and area B which every prediction models could not provide accurate predictions
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be related to the ionization in solvents that is able to 
change the spectral characteristics of the dye [44]. The 
fluorescence wavelength has strong solvent effects, as 
called “solvatochromism” based on the change of polar-
ities of the ground and excited state of a chromophore 

in the solvent polarity [41]. The high importance of 
solvent species, polarizability (AP(xx), EP(xx)) and 
dipole moment correlated topology descriptors (Chi1_
EA(dm), Chi0_EA(dm)) supported the fact of solva-
tochromism phenomena. The structural descriptors 
such as F01[C-N] and F02[C-N] reflected the structural 

Fig. 6  Chemical structures in area C and are D which specific models could not provide accurate predictions

Table 5  Top 10 important descriptors selected by three blending methods

Italic values indicate the significance of important features which highly affect the fluorescence wavelengths

Uniform blending Linear blending Any blending

Selected descriptors Feature 
importance

Selected descriptors Feature 
importance

Selected descriptors Feature 
importance

Gap 0.1654 Gap 0.1330 Gap 0.1572

AP(xx) 0.0470 AP(xx) 0.0359 AP(xx) 0.0411

F01[C-N] 0.0216 F01[C-N] 0.0247 Solvent 0.0224

SpMax2_Bh(i) 0.0176 SpMax2_Bh(i) 0.0174 F01[C-N] 0.0198

Solvent 0.0169 Solvent 0.0141 SpMax2_Bh(i) 0.0170

P_VSA_MR_7 0.0162 F02[C-N] 0.0133 P_VSA_ppp_L 0.0147

P_VSA_ppp_L 0.0151 EP(xx) 0.0122 EP(xx) 0.0115

EP(xx) 0.0133 F01[C-C] 0.0111 F02[C-N] 0.0108

Chi1_EA(dm) 0.0119 SpMin5_Bh(m) 0.0106 Chi1_EA(dm) 0.0105

F02[C-N] 0.0109 P_VSA_ppp_L 0.0103 Chi0_EA(dm) 0.0092
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features of cyanine dyes with the large ratio in training 
dataset.

Case study 2: liquid crystal dataset
Performance of DT‑based ensemble models
The optimized hyper-parameters are listed in Additional 
file 1 and were determined based on the accuracy of five-
fold cross-validation using a randomized search. Like the 
results of the regression task, the classification results of 
liquid crystal dataset by different modeling approaches 
are similar. From the results of four different DT-based 
ensemble learning models in Table  6, RF had the best 
performance of LC prediction among four ensemble 
learning models with the highest F1 and MCC. AdaBoost 
also had similar F1 but smaller MCC due to the less bal-
ance of precision and recall. However, the differences in 
predictability among the four models were limited. Both 
high bias unpruned DT with bagging strategy (RF and 
ExtraTrees) and high variance DT with boosting strategy 

(AdaBoost and GBM) both reached the same goal to pre-
dict LC properties. However, different DT-based ensem-
ble learning models provided different predictions on 
the same compound. In the test dataset, there were 102 
compounds which four DT-based ensemble learning 
models could not offer consistent prediction results. Fig-
ure 7 illustrates some examples of these compounds with 
consistent prediction results. We will compare the single 
prediction result of different models later. Moreover, we 
will discover the insights of four DT-based models from 
feature importance of how they make predictions.

Interpretation of DT‑based ensemble models
Table  7 demonstrates five important descriptors and 
feature importance from four DT-based ensemble 
learning models for the prediction of LC, and every 
model was repeated ten times with random states 
from 0 to 10. The detailed bar charts of feature impor-
tance containing 20 important descriptors are listed 

Table 6  Performance metrics values and corresponding confusion tables for four different classifiers

Training set Test set

Acc (%) F1 (%) Acc (%) Pr (%) r (%) F1 (%) MCC (%) Actual class Predicted class

LC NLC

RF 99.3 99.5 88.5 91.7 93.5 92.5 67.3 LC 673 47

NLC 61 166

ExtraTrees 99.3 99.5 87.5 91.2 92.5 91.9 65.2 LC 666 54

NLC 64 163

AdaBoost 99.3 99.5 88.1 91.2 93.4 92.3 65.1 LC 673 47

NLC 65 162

GBM 95.3 96.8 87.4 91.0 92.6 91.8 64.3 LC 667 53

NLC 66 161

Fig. 7  Prediction comparison of three LC compounds (LC-A, LC-B and LC-C) and three NLC compounds (NLC-A, NLC-B and NLC-C)
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in Additional file  1. Unlike the results of fluorescence 
dyes that had only one descriptor with extremely high 
importance score, the importance scores of the top five 
important descriptors in LC prediction were gradual 
decrements. In other words, the descriptor rank of 
LC prediction is more meaningful than fluorescence 
prediction because the model did not rely on one spe-
cific descriptor for prediction. Thus, we selected the 
top five important descriptors to discuss the differ-
ences between the four models. RF and ExtraTrees 
chose similar descriptors toward prediction. Two 
wing descriptors, wing1_NumRotatableBonds, and 
fr_unbrch_alkane were within in top six in RF and 
ExtraTrees models shown in Additional file 1: Figs. S9, 
S10. HeavyAtomCount and NumRotatableBonds had 
almost the same importance in both models.

On the other hands, boosting models had different 
results of feature importance even though the perfor-
mances of boosting models were the same as bagging 
models. GBM used more mesogen descriptors for pre-
diction than AdaBoost; instead, RF and ExtraTrees 
used more wing descriptors. The importance scores of 
AdaBoost and GBM are relatively larger than RF and 
ExtraTrees because shallow DTs in AdaBoost GBM 
picked up fewer features in training than full-grown DTs 
in RF and ExtraTrees. Interestingly, important descriptors 
selected by GBM were largely different from other mod-
els. In GBM, HeavyAtomCount, mesogen_HeavyAtom-
Count, and NumRotatableBonds were dominant factors 
of LC prediction. In consequence, four models still had 
slightly different processes and scenarios in LC predic-
tion. It would be better for improving the prediction and 

interpretation by summarizing four models using blend-
ing. The relationships between descriptors and LC prop-
erties will be discussed in the next section.

Performance of blending models
In LC prediction, three different blending methods are 
listed as follows:

•	 Uniform blending: vote the prediction results and 
average feature importance (no meta-learning).

•	 Linear blending: use logistic regression to summarize 
information (linear meta-learning).

•	 Any blending: use GBM classification to summarize 
information (non-linear meta-learning).

The blending results obtained for LC prediction 
are presented in Table  8. As a result, three blending 
methods only had slight improvements compared to 4 
DT-based ensemble learning models (level-0 models). 
The confusion table reveals that linear blending and 
any blending increase the correct prediction of NLCs. 
Any blending with 10 estimators and max_depth = 4 as 
hyperparameters were performed to develop a better 
result between level-0 models and LC property, dem-
onstrating a high accuracy of 88.8% and the F1 score 
of 92.7% and the MCC of 68.6%. Although it is hard 
to conclude that blending had significant improve-
ments based on performance metrics, the advantage 
of blending is to summarize the different predictions 
of level-0 models. We further compared the predic-
tion results of 4 DT-based ensemble learning models 
and any lending of three LC structures and three NLC 

Table 7  Top five important descriptors of LC selected by four DT-based ensemble learning models

RF ExtraTrees

Selected descriptors Feature importance Selected descriptors Feature 
importance

HeavyAtomCount 0.04649 NumRotatableBonds 0.03541

NumRotatableBonds 0.04381 HeavyAtomCount 0.03495

wing2_HeavyAtomCount 0.04329 wing1_NumRotatableBonds 0.02801

fr_unbrch_alkane 0.03315 wing2_HeavyAtomCount 0.02700

wing1_NumRotatableBonds 0.03218 wing1_HeavyAtomCount 0.02653

AdaBoost GBM

Selected descriptors Feature importance Selected descriptors Feature 
importance

HeavyAtomCount 0.08812 HeavyAtomCount 0.07017

NumRotatableBonds 0.06759 mesogen_HeavyAtomCount 0.05329

wing2_HeavyAtomCount 0.05722 NumRotatableBonds 0.04532

wing1_HeavyAtomCount 0.04705 mesogen_NumRotatableBonds 0.02774

mesogen HeavyAtomCount 0.04462 wing2_HeavyAtomCount 0.02718
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structures. It is risky to rely on one specific model for 
predicting complex chemical phenomena. Thus, we 
further compared the prediction results of four DT-
based ensemble learning models and any lending of 
three LC structures and three NLC structures shown 
in Fig.  7. These examples reveal that there were pros 
and cons using different models for the same predic-
tion. To improve the generalization of predictability, 
the blending method was one of the solutions to sum-
marize different prediction results. Surprisingly, any 
blending provided correct prediction from only one 
model with correct prediction such as LC-A in Fig.  7 
and NLC-A in Fig.  7. Thus, blending methods solved 
the inconsistency of level-0 model predictions as long 
as over two level-models had correct predictions. 
Although, blending methods did not provide a signifi-
cant improvement of prediction, the summarization 
of level-0 model information was the crucial applica-
tion of blending. To further understand the detail and 

effect of blending, it is necessary to compare the fea-
ture importance of descriptors extracted by different 
blending methods.

Interpretation of blending models
We selected the top five important descriptors and fea-
ture importance from three blending methods in Table 9. 
The bar charts of feature importance are listed in Addi-
tional file  1. First, we compared the descriptor selec-
tions of different blending methods; then we discussed 
why those descriptors were important to LC prediction. 
Uniform blending and linear blending had almost same 
Acc and F1. They used similar descriptors in prediction 
(detailed in Additional file 1: Figs. S13, S14). Due to the 
equal weights of level-0 models in uniform blending, 
AdaBoost and GBM with larger importance scores led 
to the higher importance of mesogen descriptors. On the 
other hands, the weights of level-0 models were derived 
from coefficients of in logistic regression (RF:11%, 

Table 8  Performance metrics values and corresponding confusion tables for three different blending methods

Training set Test set

Acc (%) F1 (%) Acc (%) Pr (%) r (%) F1 (%) MCC (%) Actual class Predicted 
class

LC NLC

Uniform blending 99.5 99.7 88.3 91.3 93.6 92.5 67.3 LC 674 46

NLC 64 163

Linear blending 99.5 99.7 88.4 91.6 93.5 92.5 67.8 LC 673 47

NLC 62 165

Any blending 99.3 99.5 88.8 91.7 93.8 92.7 68.6 LC 675 45

NLC 61 166

Table 9  Top five important descriptors selected by three blending methods

Uniform blending Linear blending

Selected descriptors Feature importance Selected descriptors Feature 
importance

HeavyAtomCount 0.05993 HeavyAtomCount 0.04781

NumRotatableBonds 0.04803 NumRotatableBonds 0.04219

wing2_HeavyAtomCount 0.03827 wing2_HeavyAtomCount 0.03471

mesogen_HeavyAtomCount 0.03484 wing1_HeavyAtomCount 0.03006

wing1_HeavyAtomCount 0.03290 fr_unbrch_alkane 0.02897

Any blending

Selected descriptors Feature importance

HeavyAtomCount 0.06520

NumRotatableBonds 0.05236

wing2_HeavyAtomCount 0.04321

wing1_HeavyAtomCount 0.03636

mesogen_HeavyAtomCount 0.03556
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ExtraTrees:47%, AdaBoost:11%, GBM:31%). Thus, the 
linear blending result was mainly based on ExtraTrees 
models so that the wing descriptors were more important 
than mesogen descriptors.

Any blending used the same top five descriptors 
as uniform blending depended on weights (RF: 49%, 
ExtraTrees: 6%, AdaBoost: 8%, GBM: 37%) derived from 
feature importance of the level-1 GBM model. The high 
usage rate of GBM led to the higher importance of meso-
gen descriptors. There are two possible reasons why any 
blending improved the prediction performance. One rea-
son is the high weight of RF since RF was the best pre-
diction model among four level-0 models. The second 
reason is the ensemble learning of level-1 GBM model 
which can successfully solve the complicated relationship 
between predictions of level-1 models and LC behavior.

Lastly, the summarized information led to a unification 
interpretation of relationships between descriptors and 
LC properties. Two descriptors calculated from the raw 
structure, HeavyAtomCount and NumRotatableBonds, 
were almost selected by every model. HeavyAtomCount 
represents numbers of atoms except for hydrogens which 
can be regarded as the size of compounds, and NumRo-
tatableBonds stands for alkyl chains. As a matter of fact, 
LCs consistent with long alkyl groups, and the molecular 
length should be at least 1.3 nm [45]. The rest important 
descriptors were the size of wing1, wing2, and mesogens. 

In our structure separation, we defined that wing1 is a 
longer chain and wing2 is a shorter one. The long hydro-
carbon of wing1 such as alkyl chains is able to stabilize 
molecular orientations to form liquid crystal phases [46]. 
Some wing2 fragments are small polar groups such as 
halogens, nitrile groups, and nitro groups which also gen-
erate intermolecular force to stabilize orientations [46]. 
The importance score of mesogen size was high because 
an extended, structurally rigid mesogen seems to be the 
main criterion for LC behavior such as linearly extended 
benzene rings. The descriptor, fr_unbrch_alkane, was 
still important in any blending shown in Fig.  8 which 
represents the fraction of unbranched alkane. If there 
are some branching alkane in wing groups, it may cause 
the disruption of molecule packing and destabilize liquid 
crystals. Therefore, both size and branching of wings are 
important to LC predictions.

Conclusion
The present study demonstrated that “blending” can 
boost the predictability and interpretability of traditional 
trustworthy models. The blending methods were com-
pared regarding their ability with four different DT-based 
ensemble learning methods (RF, ExtraTrees, AdaBoost, 
and GBM) to build predictive models, for regression and 
classification tasks. For regression tasks of fluorescence 
dataset, the obtained results showed that the blending 

Fig. 8  Bar chart of top 10 important descriptors selected by any blending
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with the QC descriptors produced a model of good pre-
dictability and interpretability with good agreement with 
the experimental facts of fluorescence wavelengths. For 
classification of liquid crystal behavior, blending was 
also observed to exhibit better predictive performance 
and provided the insight into liquid crystal behaviors. 
Increased accuracy of the blending method is an indica-
tion that the related phenomena in the data were well-
modeled. Although DT-based ensemble learning models 
were powerful enough to predict properties accurately, 
different DT-based ensemble learning models provided 
inconsistent predictions for the same compounds. Thus, 
blending methods solved the inconsistency of level-0 
model predictions as long as over two level-models had 
correct predictions. As well as a comparison of the fea-
ture importance of the DT-based ensemble learning 
models and blending, the blending led to better per-
formance and a unification interpretation of a trained 
model by summarizing individual predictions. The QSPR 
approach is a promising tool which provides quick and 
cost-effective for the prediction of properties of target 
compounds. Trust of QSPR approach can be further 
enhanced by interpretation when blending complements 
each trustworthy model in ways that conform to human 
knowledge and expectations.
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